DOI QR코드

DOI QR Code

Assessment and Optimization of Xylanase Production Using Mono-Culture and Co-Cultures of Bacillus subtilis and Bacillus pumilus

  • Chitranshu Pandey (Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University) ;
  • Neeraj Gupta (Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University)
  • 투고 : 2023.01.02
  • 심사 : 2023.01.16
  • 발행 : 2023.03.28

초록

Xylanase is an industrially relevant enzyme used for the production of xylobiose and xylose. Various methods are used to enhance the microbial yield of xylanase. In the present study, co-culturing of Bacillus subtilis and Bacillus pumilus were investigated using submerged fermentation for xylanase production, which was markedly increased when sal, sagwan, newspaper, wheat bran, and xylan were used as single carbon sources. Maximum xylanase production was reported after 5 days of incubation in optimized media at pH 7.0 and 37℃, resulting in 2.69 ± 0.25 µmol/min by coculture. The 1:1 ratio of sal and sagwan in optimized production media was shown to be suitable for xylanase synthesis in submerged fermentation (SMF). In comparison to mono-culture using B. pumilus and B. subtilis, co-culturing resulted in an overall 3.8-fold and 2.15-fold increase in xylanase production, respectively.

키워드

과제정보

Mr. Manoj Verma, Director, MRD LifeSciences Pvt. Ltd., Lucknow, deserves my heartfelt gratitude. I am grateful to Dr. Pallavi Sharma (Research Scientist MRDLS, Lucknow) for her invaluable assistance during the review process, and I am also grateful to the almighty, without whose blessing nothing would have been possible.

참고문헌

  1. Andlar M, Rezic T, Mardetko N, Kracher D, Ludwig R, Santek B. 2018. Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation. Eng. Life Sci. 18: 768-778. https://doi.org/10.1002/elsc.201800039
  2. Gunawan C, Xue S, Pattathil S, da Costa Sousa L, Dale BE, Balan V. 2017. Comprehensive characterization of non-cellulosic recalcitrant cell wall carbohydrates in unhydrolyzed solids from AFEXpretreated corn stover. Biotechnol. Biofuels 10: 1-14. https://doi.org/10.1186/s13068-016-0693-9
  3. Bajpai P. Xylanolytic enzymes: Academic press, 2014.
  4. Ellatif SA, Abdel Razik ES, Al-Surhanee AA, Al-Sarraj F, Daigham GE, Mahfouz AY. 2022. Enhanced production, cloning, and expression of a xylanase gene from endophytic fungal strain Trichoderma harzianum kj831197. 1: Unveiling the in vitro antifungal activity against phytopathogenic fungi. J. Fungi 8: 447.
  5. Bajaj P, Mahajan R. 2019. Cellulase and xylanase synergism in industrial biotechnology. Appl. Microbiol. Biotechnol. 103: 8711-8724. https://doi.org/10.1007/s00253-019-10146-0
  6. Dhiman S, Mukherjee G. 2018. Recent advances and industrial applications of microbial xylanases: a review. Fungi and their role in sustainable development: current perspectives. pp. 329-348.
  7. Gavaseraei HR, Hasanzadeh R, Afsharnezhad M, Kalurazi AF, Shahangian SS, Aghamaali MR, et al. 2021. Identification, heterologous expression and biochemical characterization of a novel cellulase-free xylanase B from the thermophilic bacterium Cohnella sp. A01. Process Biochem. 107: 48-58. https://doi.org/10.1016/j.procbio.2021.05.002
  8. Yardimci GO, Cekmecelioglu D. 2018. Assessment and optimization of xylanase production using co-cultures of Bacillus subtilis and Kluyveromyces marxianus. 3 Biotech. 8: 290.
  9. Shata HMAH, El-Deen AMN, Nawwar GAM, Farid MAF. 2014. Xylanase production by mixed culture using crude hemicellulose from rice straw black liquor and peat moss as an inert support. J. Appl. Biol. Chem. 57: 313-320. https://doi.org/10.3839/jabc.2014.049
  10. Garcia-Kirchner O, Munoz-Aguilar M, Perez-Villalva R, HuitronVargas C. 2002. Mixed submerged fermentation with two filamentous fungi for cellulolytic and xylanolytic enzyme production. Biotechnol. Fuels Chem. Springer. pp. 1105-1114.
  11. Jeyakumar RM, Rajesh L. 2012. Effect of various physical parameters for the production of the enzyme xylanase from mixed culture of Bacillus polymyxa and Cellulomonas uda. Asian J. Biomed. Pharm. Sci. 2: 72.
  12. Irfan M, Nadeem M, Syed Q. 2013. Purification and kinetics study of thermostable cellulase free xylanase from Bacillus subtilis. Protein Peptide Lett. 20: 1225-1231. https://doi.org/10.2174/09298665113209990007
  13. Rajoka M. 2007. Kinetic parameters and thermodynamic values of β-xylosidase production by Kluyveromyces marxianus. Bioresour. Technol. 98: 2212-2219. https://doi.org/10.1016/j.biortech.2006.08.029
  14. Sanghi A, Garg N, Sharma J, Kuhar K, Kuhad RC, Gupta VK. 2008. Optimization of xylanase production using inexpensive agroresidues by alkalophilic Bacillus subtilis ASH in solid-state fermentation. World J. Microbiol. Biotechnol. 24: 633-640. https://doi.org/10.1007/s11274-007-9521-5
  15. Kirimura K, Yoshioka I. 2019. Citric acid. Comprehensive Biotechnology 3rd ed Oxford: Pergamon, Elsevier BV. pp. 158-165.
  16. Confortin TC, Spannemberg SS, Todero I, Luft L, Brun T, Alves EA, et al. 2019. Microbial enzymes as control agents of diseases and pests in organic agriculture. New Future Dev. Microb. Biotechnol. Bioeng. 2019: 321-332. https://doi.org/10.1016/B978-0-444-63504-4.00021-9
  17. Beg QK, Gupta R. 2003. Purification and characterization of an oxidation-stable, thiol-dependent serine alkaline protease from Bacillus mojavensis. Enzyme Microb. Technol. 32: 294-304. https://doi.org/10.1016/S0141-0229(02)00293-4
  18. Irfan M, Asghar U, Nadeem M, Nelofer R, Syed Q. 2016. Optimization of process parameters for xylanase production by Bacillus sp. in submerged fermentation. J. Rad. Res. Appl. Sci. 9: 139-147. https://doi.org/10.1016/j.jrras.2015.10.008
  19. Czitrom V. 1999. One-factor-at-a-time versus designed experiments. Am. Stat. 53: 126-131. https://doi.org/10.1080/00031305.1999.10474445
  20. Roy N, Habib MR. 2009. Isolation and characterization of Xylanase producing strain of Bacillus cereus from soil. Iranian J. Microbiol. 1: 49-53.
  21. Sharma P, Singh V, Maurya SK, Kamal MA, Poddar NK. 2021. Antimicrobial and antifungal properties of leaves to root extracts and saponin fractions of Chlorophytum borivilianum. Curr. Bioact. Compd. 17: 59-68. https://doi.org/10.2174/1573407216666200214093400
  22. Khalil A. 2011. Isolation and characterization of three thermophilic bacterial strains (lipase, cellulose and amylase producers) from hot springs in Saudi Arabia. Afr. J. Biotechnol. 10: 8834-8839. https://doi.org/10.5897/AJB11.833
  23. Nagar S, Mittal A, Gupta VK. 2012. A cost effective method for screening and isolation of xylan degrading bacteria using agro waste material. Asian J. Biol. Sci. 5: 384-394. https://doi.org/10.3923/ajbs.2012.384.394
  24. Irfan M, Nadeem M, Syed Q. 2014. One-factor-at-a-time (OFAT) optimization of xylanase production from Trichoderma virideIR05 in solid-state fermentation. J. Rad. Res. Appl. Sci. 7: 317-326. https://doi.org/10.1016/j.jrras.2014.04.004
  25. Jasim RK. 2016. Isolation and molecular characterisation xylanase produced by sporolactobacilli. Banat's J. Biotechnol. 7: 30-37. https://doi.org/10.7904/2068-4738-VII(14)-30
  26. Gupta U, Kar R. 2009. Xylanase production by a thermo-tolerant Bacillus species under solid-state and submerged fermentation. Braz. Arch. Biol. Technol. 52: 1363-1371. https://doi.org/10.1590/S1516-89132009000600007
  27. Damaso MCT, Andrade CM, Pereira Jr N. 2002. Production and properties of the cellulase-free xylanase from Thermomyces lanuginosus IOC-4145. Braz. J. Microbiol. 33: 333-338. https://doi.org/10.1590/S1517-83822002000400011
  28. Fang H-Y, Chang S-M, Lan C-H, Fang TJ. 2008. Purification and characterization of a xylanase from Aspergillus carneus M34 and its potential use in photoprotectant preparation. Process Biochem. 43: 49-55. https://doi.org/10.1016/j.procbio.2007.10.015
  29. Sanjivkumar M, Silambarasan T, Palavesam A, Immanuel G. 2017. Biosynthesis, purification and characterization of β-1, 4-xylanase from a novel mangrove associated actinobacterium Streptomyces olivaceus (MSU3) and its applications. Protein Expr. Purif. 130: 1-12. https://doi.org/10.1016/j.pep.2016.09.017
  30. Qinnghe C, Xiaoyu Y, Tiangui N, Cheng J, Qiugang M. 2004. The screening of culture condition and properties of xylanase by white-rot fungus Pleurotus ostreatus. Process Biochem. 39: 1561-1566. https://doi.org/10.1016/S0032-9592(03)00290-5
  31. Kuhad RC, Manchanda M, Singh A. 1998. Optimization of xylanase production by a hyperxylanolytic mutant strain of Fusarium oxysporum. Process Biochem. 33: 641-647. https://doi.org/10.1016/S0032-9592(98)00025-9
  32. Monisha R, Uma M, Murthy VK. 2009. Partial purification and characterization of Bacillus pumilus xylanase from soil source. KATSU 5: 137-148.
  33. Akhavan Sepahy A, Ghazi S, Akhavan Sepahy M. 2011. Costeffective production and optimization of alkaline xylanase by indigenous Bacillus mojavensis AG137 fermented on agricultural waste. Enzyme Res. 2011: 593624.
  34. Liu L, Chen J, Lim P-E, Wei D. 2018. Dual-species cultivation of microalgae and yeast for enhanced biomass and microbial lipid production. J. Appl. Phycol. 30: 2997-3007. https://doi.org/10.1007/s10811-018-1526-y
  35. Li H, Zhong Y, Lu Q, Zhang X, Wang Q, Liu H, et al. 2019. Cocultivation of Rhodotorula glutinis and Chlorella pyrenoidosa to improve nutrient removal and protein content by their synergistic relationship. RSC Adv. 9: 14331-1442.
  36. Ahamed A, Vermette P. 2008. Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions. Biochem. Eng. J. 40: 399-407. https://doi.org/10.1016/j.bej.2007.11.030
  37. Takahashi H, Nakai R, Nakamura S. 2000. Purification and partial characterization of a basic xylanase produced by thermoalkaliphilic Bacillus sp. strain TAR-1. Biosci. Biotechnol. Biochem. 64: 887-890. https://doi.org/10.1271/bbb.64.887
  38. Dhillon A, Gupta J, Jauhari B, Khanna S. 2000. A cellulase-poor, thermostable, alkalitolerant xylanase produced by Bacillus circulans AB 16 grown on rice straw and its application in biobleaching of eucalyptus pulp. Bioresour. Technol. 73: 273-277. https://doi.org/10.1016/S0960-8524(99)00116-9
  39. Archana A, Satyanarayana T. 2003. Purification and characterization of a cellulase-free xylanase of a moderate thermophile Bacillus licheniformis A99. World J. Microbiol. Biotechnol. 19: 53-57. https://doi.org/10.1023/A:1022527702400
  40. Bataillon M, Cardinali A-PN, Castillon N, Duchiron F. 2000. Purification and characterization of a moderately thermostable xylanase from Bacillus sp. strain SPS-0. Enzyme Microb. Technol. 26: 187-192. https://doi.org/10.1016/S0141-0229(99)00143-X
  41. Ninawe S, Kuhad RC. 2006. Bleaching of wheat straw-rich soda pulp with xylanase from a thermoalkalophilic Streptomyces cyaneus SN32. Bioresour. Technol. 97: 2291-2295. https://doi.org/10.1016/j.biortech.2005.10.035
  42. Zhou J, Ma Q, Yi H, Wang L, Song H, Yuan Y-J. 2011. Metabolome profiling reveals metabolic cooperation between Bacillus megaterium and Ketogulonicigenium vulgare during induced swarm motility. Appl. Environ. Microbiol. 77: 7023-7030. https://doi.org/10.1128/AEM.05123-11
  43. Kapoore RV, Padmaperuma G, Maneein S, Vaidyanathan S. 2022. Co-culturing microbial consortia: approaches for applications in biomanufacturing and bioprocessing. Crit. Rev. Biotechnol. 42: 46-72. https://doi.org/10.1080/07388551.2021.1921691
  44. Anh HTH, Shahsavari E, Bott NJ, Ball AS. 2021. Application of co-culture technology to enhance protease production by two halophilic bacteria, Marinirhabdus sp. and Marinobacter hydrocarbonoclasticus. Molecules 26: 3141.
  45. Asmamaw T, Fassil A. 2014. Co-culture: A great promising method in single cell protein production. Biotechnol. Mol. Biol. Rev. 9: 12-20.  https://doi.org/10.5897/BMBR2014.0223