DOI QR코드

DOI QR Code

Antioxidant, Black Hair, and Hair Growth Effect of Mixed Extracts of Nardostachys jatamansi, Ocimum basilicum and Crocus sativus

  • Mi Jeong Choi (Biomedical Biotechnology Research Institute Co., Ltd.) ;
  • Yu Ri Kim (Biomedical Biotechnology Research Institute Co., Ltd.)
  • Received : 2022.10.17
  • Accepted : 2023.01.11
  • Published : 2023.03.28

Abstract

The purpose of this study is to confirm the antioxidant, black hair, and hair growth effects of the N. jatamansi, O. basilicum, and C. sativus mixed extracts that pharmacological efficacy has been verified. Accordingly, four samples (NOC-1 to-4) produced under different extraction conditions were prepared and the results are as follows. First, all samples showed an increase in antioxidant content in a concentration-dependent manner from the results of antioxidant efficacy. In particular, NOC-4 extracted by steaming and ultrasonic methods showed the highest antioxidant effect among the four samples. As a result of analysis of the amount of melanin production in mouse melanoma cells, NOC-4 with concentration of 500 ㎍/ml showed higher melanin production compared to the control group, so the black hair efficacy was the best. Also, in the hair growth test results, it was found that the hair growth was the best at 0.94 ± 0.10 mm at experimental group orally administered with 500 mg/kg of NOC-4. In addition, as a result of cytotoxicity analysis in mouse melanoma cells, the safety of samples was demonstrated by maintaining cell viability of 95% or more at all concentrations. These results suggest that the steaming and ultrasonic extraction method increased the extraction yield of active ingredients for antioxidant, melanin, and hair generation, thereby affecting physiological activity. Based on these results, if the steaming and ultrasonic extraction methods are applied to the mixed extraction of N. jatamansi, O. basilicum, and C. sativus, it is judged that the practical potential as a natural material for black hair and hair growth agents will increase.

Keywords

References

  1. Gould JG, Sneath RL. 1985. Electron microscopy image analysis quantification of ultrastructural changes in hair fiber cross sections as a result of cosmetic treatment. J. Soc. Cosmet. Chem. 36: 53-59.
  2. Ito S, Fujita K. 1985. Microanalysis of eumelanin and pheomelanin in hair and melanomas by chemical degradation and liquid chromatography. Anal. Biochem. 144: 527-536. https://doi.org/10.1016/0003-2697(85)90150-2
  3. Parsad D, Wakamatsu K, Kanwar AJ, Kumar B, Ito S. 2003. Eumelanin and phaeomelanin contents of depigmented and repigmented skin in vitiligo patients. Br. J. Dermatol. 149: 624-626. https://doi.org/10.1046/j.1365-2133.2003.05440.x
  4. Chang BS, Jin Z. 2015. Ultrastructural analysis of outer and inner root sheath in the hair follicle during anagen phase. J. Invest. Cosmetol. 11: 325-332. https://doi.org/10.15810/jic.2015.11.4.006
  5. Dario MF, Baby AR, Velasco MVR. 2015. Effects of solar radiation on hair and photoprotection. J. Photochem. Photobiol. B. 153: 240-246. https://doi.org/10.1016/j.jphotobiol.2015.09.025
  6. Wolfram LJ. 2003. Human hair: A unique physicochemical composite. J. Am. Acad. Dermatol. 48: S106-S114. https://doi.org/10.1067/mjd.2003.276
  7. Richena M, Silveira M, Rezende CA, Joekes I. 2014. Yellowing and bleaching of grey hair caused by photo and thermal degradation. J. Photochem. Photobiol. B. 138: 172-181. https://doi.org/10.1016/j.jphotobiol.2014.05.017
  8. Im KR, Kim MJ, Yoon KS. 2011. Hair growth activity and melanogenic activity of oriental medical prescription. J. Soc. Cosmet. Sci. Korea 37: 161-169.
  9. Jung S, Park H, Kim J, Oh Y, Kim MM. 2020. The effect of saururus chinensis extracts on antioxidant activity and melanin synthesis. J. Life Sci. 30: 851-859.
  10. Crawford K, Hernandez C. 2014. A review of hair care products for black individuals. Cutis. 93: 289-293.
  11. Thun MJ, Altekruse SF, Namboodiri MM, Calle EE, Myers DG, Heath Jr CW. 1994. Hair dye use and risk of fatal cancers in US women. J. Natl. Cancer Inst. 86: 210-215. https://doi.org/10.1093/jnci/86.3.210
  12. Dong Y, Qiu Y, Gao D, Zhang K, Zhou K, Yin H, Fu Q. 2019. Melaninmimetic multicolor and low-toxicity hair dye. RSC Adv. 9: 33617-33624. https://doi.org/10.1039/C9RA07466J
  13. Eberle CE, Sandler DP, Taylor KW, White AJ. 2020. Hair dye and chemical straightener use and breast cancer risk in a large US population of black and white women. Int. J. Cancer 147: 383-391. https://doi.org/10.1002/ijc.32738
  14. Shapiro J, Price VH. 1998. Hair regrowth therapeutic agents. Dermatol. Clin. 16: 341-356. https://doi.org/10.1016/S0733-8635(05)70017-6
  15. Cotsarelis G, Millar SE. 2001. Towards a molecular understanding of hair loss and its treatment. Trends Mol. Med. 7: 293-301. https://doi.org/10.1016/S1471-4914(01)02027-5
  16. Phillips TG, Slomiany WP, Robert Allison II. 2017. Hair loss: common causes and treatment. Am. Fam. Physician 96: 371-378.
  17. Hagemann T, Schlutter-Bohmer B, Allam JP, Bieber TN. 2005. Positive lymphocyte transformation test in a patient with allergic contact dermatitis of the scalp after short-term use of topical minoxidil solution. Contact. Dermatitis 53: 53-55. https://doi.org/10.1111/j.0105-1873.2005.00456b.x
  18. Suzuki K, Suzuki M, Akamatsu H, Matsungaga K. 2002. Allergic contact dermatitis from minoxidil: study of cross-reaction to minoxidil. Am. J. Contact. Dermat. 13: 45-46.
  19. Choi MY. 2021. Effects of essential oil from Korean medicinal herb on hair growth and graying. J. Jeahan Orient. Med. Acad. 19: 47-47.
  20. Sharma B, Vasudeva N, Sharma S. 2020. Phytopharmacological review on Crinum asiaticum: A potential medicinal herb. Nat. Prod. J. 10: 342-354. https://doi.org/10.2174/2210315509666190731142333
  21. Bharti M, Shrivastav A, Abid M, Khan NA. 2020. A review on hair growth regulator. J. Drug Deliv. Ther. 10: 368-375. https://doi.org/10.22270/jddt.v10i5.4406
  22. Park C, Zheng M, Seo EA, Kwon KB, Ryu DG. 2010. Cytoprotective and anti-inflammatory effects of Nardostachys jatamansi water extract via expression of HO-1. Korean J. Orient. Physiol. Pathol. 24: 624-629.
  23. Choi SB, Park SJ. 2016. Anti-inflammatory Effects of 8α-hydroxy pinoresinol isolated from Nardostachys jatamansi on lipopolysaccharide-induced inflammatory response in RAW 264.7 cells. Korean J. Herbol. 31: 1-6. https://doi.org/10.6116/kjh.2016.31.5.1.
  24. Min DL, Park EJ. 2012. Effects of Nardostachys Jatamansi on atopic dermatitis-like skin lesions. J. Korean Orient. Pediatr. 26: 13-24. https://doi.org/10.7778/jpkm.2012.26.2.013
  25. Koo BS, Kim DK, Choi JH, Lee DU. 2006. Inhibitory effects of the essential oil from nardostachys jatamansi on central nervous system after inhalation and oral administration. J. Life Sci. 16: 156-161. https://doi.org/10.5352/JLS.2006.16.1.156
  26. Kim JH, Yoon SJ, Lee KH, Kwon HJ, Chun SS, Kim TW, et al. 2005. Screening of biological activities of the extracts from basil (Ocimum basilicum L.). J. Korean Soc. Appl. Chem. 48: 173-177.
  27. Boskabady MH, Seyedhosseini Tamijani SM, Rafatpanah H, Rezaei A, Alavinejad A. 2011. The effect of Crocus sativus extract on human lymphocytes' cytokines and T helper 2/T helper 1 balance. J. Med. Food 14: 1538-1545. https://doi.org/10.1089/jmf.2011.1697
  28. Plangar AF, Anaeigoudari A, KhajaviRad A, Shafei MN. 2019. Beneficial cardiovascular effects of hydroalcoholic extract from crocus sativus in hypertension induced by angiotensin II. J. Pharmacopuncture 22: 95-101. https://doi.org/10.3831/KPI.2019.22.012
  29. Carreira-Casais A, Carpena M, Pereira AG, Chamorro F, SoriaLopez A, Garcia Perez P. 2021. Critical variables influencing the ultrasound-assisted extraction of bioactive compounds-A Review. Chem. Proc. 5: 50-54. https://doi.org/10.3390/CSAC2021-10562
  30. Kobus Z, Kusinska E. 2008. Influence of physical properties of liquid on acoustic power of ultrasonic processor. Kom. Mot. Energ. Roln. 8a: 71-78.
  31. Zhou T, Xu DP, Lin SJ, Li Y, Zheng Y, Zhou Y, et al. 2017. Ultrasound-assisted extraction and identification of natural antioxidants from the fruit of Melastoma sanguineum sims. Molecules 22: 306-320. https://doi.org/10.3390/molecules22020306
  32. Que F, Mao L, Pan X. 2006. Antioxidant activities of five Chinese rice wines and the involvement of phenolic compounds. Food Res. Int. 39: 581-587. https://doi.org/10.1016/j.foodres.2005.12.001
  33. Arnao MB. 2000. Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case. Trends Food Sci. Technol. 11: 419-421. https://doi.org/10.1016/S0924-2244(01)00027-9
  34. Platzer M, Kiese S, Herfellner T, Schweiggert-Weisz U, Miesbauer O, Eisner P. 2021. Common trends and differences in antioxidant activity analysis of phenolic substances using single electron transfer based assays. Molecules 26: 1244-1261. https://doi.org/10.3390/molecules26051244
  35. Aoshima H, Tsunoue H, Koda H, Kiso Y. 2004. Aging of whiskey increases 1, 1-diphenyl-2-picrylhydrazyl radical scavenging activity. J. Agric. Food Chem. 52: 5240-5244. https://doi.org/10.1021/jf049817s
  36. Kim MS, Lee YS, Kwon HY, Kim JS, Sohn HY. 2014. Antioxidative, antimicrobial, and anti-proliferative activities of the floret and stalk of broccoli (Brassica oleracea L.). Korean J. Microbiol. Biotechnol. 42: 58-66. https://doi.org/10.4014/kjmb.1401.01003
  37. Seiberg M. 2013. Age-induced hair greying-the multiple effects of oxidative stress. Int. J. Cosmet. Sci. 35: 532-538. https://doi.org/10.1111/ics.12090
  38. Khoddami A, Wilkes MA, Roberts TH. 2013. Techniques for analysis of plant phenolic compounds. Molecules 18: 2328-2375. https://doi.org/10.3390/molecules18022328
  39. Laura A, Moreno-Escamilla JO, Rodrigo-Garcia J, Alvarez-Parrilla E. 2019. Phenolic compounds. In Postharvest physiology and biochemistry of fruits and vegetables. pp. 253-271. (Woodhead Publishing)
  40. Yoneta A, Yamashita T, Jin HY, Kondo S, Jimbow K. 2004. Ectopic expression of tyrosinase increases melanin synthesis and cell death following UVB irradiation in fibroblasts from familial atypical multiple mole and melanoma (FAMMM) patients. Melanoma Res. 14: 387-394. https://doi.org/10.1097/00008390-200410000-00009
  41. Kameyama K, Takemura T, Hamada Y, Sakai C, Kondoh S, Mishiyama S, et al. 1993. Pigment production in murine melanoma cells is regulated by tyrosinase, tyrosinase-related protein 1 (TRP1), DOPA chrome tautomerase (TRP2), and a melanogenic inhibitor. J. Invest. Dermatol. 100: 126-131. https://doi.org/10.1111/1523-1747.ep12462778
  42. Herrling T, Jung K, Fuchs J. 2008. The role of melanin as protector against free radicals in skin and its role as free radical indicator in hair. Spectrochim Acta A Mol. Biomol. Spectrosc. 69: 1429-1435. https://doi.org/10.1016/j.saa.2007.09.030
  43. Borges CR, Roberts JC, Wilkins DG, Rollins DE. 2001. Relationship of melanin degradation products to actual melanin content: application to human hair. Anal. Biochem. 290: 116-125. https://doi.org/10.1006/abio.2000.4976
  44. Ortonne JP, Prota G. 1993. Hair melanins and hair color: ultrastructural and biochemical aspects. J. Invest. Dermatol. 101: 82S89S.
  45. Hearing VJ, Jimenez M. 1987. Mammalian tyrosinase-the critical regulatory control point in melanocyte pigmentation. Int. J. Biochem. 19: 1141-1147. https://doi.org/10.1016/0020-711X(87)90095-4
  46. Cho YH, Park JE, Lee JS. 2017. Tranexamic acid inhibits melanogenesis by activating the autophagy system in cultured melanoma cells. J. Dermatol. Sci. 88: 96-102. https://doi.org/10.1016/j.jdermsci.2017.05.019
  47. Xi J, Shen D, Zhao S, Lu B, Li Y, Zhang R. 2009. Characterization of polyphenols from green tea leaves using a high hydrostatic pressure extraction. Int. J. Pharm. 382: 139-143. https://doi.org/10.1016/j.ijpharm.2009.08.023
  48. Chemat F, Khan MK. 2011. Applications of ultrasound in food technology: processing, preservation and extraction. Ultrasonics Sonochem. 18: 813-835.
  49. Dai CY, Liao PR, Zhao MZ, Gong C, Dang Y, Qu Y, et al. 2020. Optimization of ultrasonic flavonoid extraction from Saussurea involucrate, and the ability of flavonoids to block melanin deposition in human melanocytes. Molecules 25: 313-328. https://doi.org/10.3390/molecules25020313
  50. Gaba V, Kathiravan K, Amutha S, Singer S, Xiaodi X, Ananthakrishnan G. 2008. The uses of ultrasound in plant tissue culture. Plant Tissue Culture Eng. 6: 417-426. https://doi.org/10.1007/1-4020-3694-9_22
  51. Rajewska K, Mierzwa D. 2017. Influence of ultrasound on the microstructure of plant tissue. Innov. Food Sci. Emerg. Technol. 43: 117-129. https://doi.org/10.1016/j.ifset.2017.07.034
  52. Lee YH, Kim WJ, Lee MH, Kim SY, Seo DH, Kim HS, et al. 2016. Antiskeletal muscle atrophy effect of Oenothera odorata root extract via reactive oxygen species-dependent signaling pathways in cellular and mouse model. Biosci. Biotechnol. Biochem. 80: 80-88.  https://doi.org/10.1080/09168451.2015.1075861