DOI QR코드

DOI QR Code

Cloning and Characterization of a Methionine Aminopeptidase (MAP) Gene from Tetragenococcus halophilus CY54 Isolated from Myeolchi-Jeotgal

  • Tae Jin Kim (Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University) ;
  • Min Jae Kim (Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University) ;
  • Yun Ji Kang (Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University) ;
  • Ji Yeon Yoo (Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University) ;
  • Jeong Hwan Kim (Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University)
  • 투고 : 2023.01.18
  • 심사 : 2023.03.08
  • 발행 : 2023.03.28

초록

A map gene encoding methionyl-specific aminopeptidase (MAP; EC 3.4.11.18) was cloned from Tetragenococcus halophilus CY54. Translated amino acid sequence of CY54 MAP showed high similarities with those from Enterococcus faecalis (83.8%) and Streptococcus salivarius (62.2%) but low similarities with MAPs from Lactobacillus and Lactococcus genera. The map gene was overexpressed in E. coli BL21(DE3) using pET26b(+),pET26b(+), and the recombinant MAP was purified by using an Ni-NTA column. The size of recombinant MAP was 29 kDa as determined by SDS-PAGE. The optimum pH and temperature of CY54 MAP were pH 5.0 and 60℃, respectively. The activity of CY54 MAP was most significantly increased by Co2+ ion (159%), and showed the highest activity at 12% NaCl. Km and Vmax were 0.64 ± 0.006 mM and 10.12 ± 0.014 U/mg protein, respectively when met-pNA was used as the substrate. This is the first report on a MAP from Tetragenococcus species.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2020R1A2C100826711). Kim TJ, Kim MJ, Kang YJ, and Yoo JY have been supported by BK21 four program from MOE, Korea.

참고문헌

  1. Chang YH, Teichert U, Smith JA. 1990. Purification and characterization of a methionine aminopeptidase from Saccharomyces cerevisiae. J. Biol. Chem. 265: 19892-19897.  https://doi.org/10.1016/S0021-9258(17)45456-1
  2. Ben-Bassat A, Bauer K, Chang SY, Myambo K, Boosman A, Chang S. 1987. Processing of the initiation methionine from proteins: properties of the Escherichia coli methionine aminopeptidase and its gene structure. J. Bacteriol. 169: 751-757.  https://doi.org/10.1128/jb.169.2.751-757.1987
  3. Chung JM, Chung IY, Lee YS. 2002. The purification and characterization of a Bacillus stearothermophilus methionine aminopeptidase (MetAP). J. Biochem. Mol. Biol. 35: 228-235.  https://doi.org/10.5483/BMBRep.2002.35.2.228
  4. Lowther WT, Matthews BW. 2000. Structure and function of the methionine aminopeptidases. Biochim. Biophys. Acta 1477: 157-167.  https://doi.org/10.1016/S0167-4838(99)00271-X
  5. Arfin SM, Kendall RL, Hall L, Weaver LH, Stewart AE, Matthews BW, et al. 1995. Eukaryotic methionyl aminopeptidases: two classes of cobalt-dependent enzymes. Proc. Natl. Acad. Sci. USA 92: 7714-7718.  https://doi.org/10.1073/pnas.92.17.7714
  6. Boufous EH, Vadeboncoeur C. 2003. Purification and characterization of the Streptococcus salivarius methionine aminopeptidase (MetAP). Biochimie 85: 993-997.  https://doi.org/10.1016/j.biochi.2003.08.001
  7. Kishor C, Gumpena R, Reddi R, Addlagatta A. 2012. Structural studies of Enterococcus faecalis methionine aminopeptidase and design of microbe specific 2, 2'-bipyridine based inhibitors. Med. Chem. Commun. 3: 1406-1412.  https://doi.org/10.1039/c2md20096a
  8. Jeong DW, Heo S, Kim TJ, Kim JH. 2021. Complete genome sequence of Tetragenococcus halophilus CY54 showing protease and aminopeptidase activity. Korean J. Microbiol. 57: 223-225. 
  9. Udomsil N, Rodtong S, Choi YJ, Hua Y, Yongsawatdigul J. 2011. Use of Tetragenococcus halophilus as a starter culture for flavor improvement in fish sauce fermentation. J. Agric. Food Chem. 59: 8401-8408.  https://doi.org/10.1021/jf201953v
  10. Harada R, Yuzuki M, Ito K, Shiga K, Bamba T, Fukusaki E. 2018. Microbe participation in aroma production during soy sauce fermentation. J. Biosci. Bioeng. 125: 688-694.  https://doi.org/10.1016/j.jbiosc.2017.12.004
  11. Lee SJ, Jeon HS, Yoo JY, Kang YJ, Kim MJ, Kim TJ, et al. 2022. Characterization of a novel glutamate decarboxylase (GAD) from Latilactobacillus curvatus K285 isolated from Gat-Kimchi. Food Sci. Biotechnol. 31: 69-78.  https://doi.org/10.1007/s10068-021-01005-8
  12. Magboul AA, McSweeney PL. 1999. Purification and characterization of an aminopeptidase from Lactobacillus curvatus DPC2024. Int. Dairy J. 9: 107-116.  https://doi.org/10.1016/S0958-6946(99)00029-1
  13. Zheng HJ, Wang BF, Zhang XL, Han H, Lu G, Jin L, Pu SY, et al. 2008. The complete genome sequence of Lactobacillus delbrueckii subsp. bulgaricus 2038. Trends Cell Mol. Biol. 3: 15-30. 
  14. Kato H, Shiwa Y, Oshima K, Machii M, Araya-Kojima T, Zendo T, et al. 2012. Complete genome sequence of Lactococcus lactis IO-1, a lactic acid bacterium that utilizes xylose and produces high levels of L-lactic acid. J. Bacteriol. 94: 2102-2103.  https://doi.org/10.1128/JB.00074-12
  15. Zhang X, Chen S, Hu Z, Zhang L, Wang H. 2009. Expression and characterization of two functional methionine aminopeptidases from Mycobacterium tuberculosis H37Rv. Curr. Microbiol. 59: 520-525.  https://doi.org/10.1007/s00284-009-9470-3
  16. Chung JM, Chung IY, Lee YS. 2002. The purification and characterization of a Bacillus stearothermophilus methionine aminopeptidase (MetAP). J. Biochem. Mol. Biol. 35: 228-235. https://doi.org/10.5483/BMBRep.2002.35.2.228