DOI QR코드

DOI QR Code

The Mutant Lactobacillus plantarum GNS300 Showed Improved Exopolysaccharide Production and Antioxidant Activity

  • Jae-Youn Jung (Department of Biohealth-Machinery Convergence Engineering, Kangwon National University) ;
  • Deok-Ho Kwon (Department of Biohealth-Machinery Convergence Engineering, Kangwon National University) ;
  • Yoo Jin Lee (Department of Bioengineering and Technology, Kangwon National University) ;
  • Young Keun Song (The Garden of Naturalsolution Co., Ltd) ;
  • Moon Sik Chang (The Garden of Naturalsolution Co., Ltd) ;
  • Suk-Jin Ha (Department of Biohealth-Machinery Convergence Engineering, Kangwon National University)
  • 투고 : 2022.11.28
  • 심사 : 2023.02.22
  • 발행 : 2023.03.28

초록

After random mutagenesis, the mutant Lactobacillus plantarum GNS300 showed improved exopolysaccharide production as determined by the quantification of total sugar. The mutant L. plantarum GNS300 produced 2.82 g/l of exopolysaccharide which showed 79.62% improved exopolysaccharide production compared with the parental strain. When exopolysaccharide of L. plantarum GNS300 was analyzed, the exopolysaccharide is composed of galactose (93.35%) and glucose (6.65%). Through the optimization of fermentation conditions using a bioreactor, 2.93 g/l of exopolysaccharide was produced from 20 g/l of glucose at 35℃, 500 rpm, and 0.1 vvm for 12 h. The mutant L. plantarum GNS300 exhibited 69.18% higher antioxidant activity than that from the parental strain, which might be caused by higher exopolysaccharide production. The concentrated supernatant of the mutant L. plantarum GNS300 inhibited the growth of gram-positive bacteria (Bacillus cereus and Staphylococcus aureus) and gram-negative bacteria (Escherichia coli, Vibrio parahaemolyticus, and Salmonella typhimurium).

키워드

과제정보

This research was supported by research program funded by The Garden of Naturalsolution Co., Ltd (C1016186-01-01).

참고문헌

  1. Ale EC, Batistela VA, Correa Olivar G, Ferrado JB, Sadiq S, Ahmed HI, et al. 2020. Statistical optimisation of the exopolysaccharide production by Lactobacillus fermentum Lf2 and analysis of its chemical composition. Int. J. Dairy Technol. 73: 76-rm87. 
  2. Almalki MA. 2020. Exopolysaccharide production by a new Lactobacillus lactis isolated from the fermented milk and its antioxidant properties. J. King Saud. Univ. Sci. 32: 1272-1277.  https://doi.org/10.1016/j.jksus.2019.11.002
  3. Arques JL, Rodriguez E, Langa S, Landete JM, Medina M. 2015. Antimicrobial activity of lactic acid bacteria in dairy products and gut: effect on pathogens. BioMed Res. Int. 2015. 
  4. Ates O. 2015. Systems biology of microbial exopolysaccharides production. Front. Bioeng. Biotechnol. 3: 200. 
  5. Banik R, Kanari B, Upadhyay S. 2000. Exopolysaccharide of the gellan family: prospects and potential. World J. Microbiol. Biotechnol. 16: 407-414.  https://doi.org/10.1023/A:1008951706621
  6. Davoodabadi A, Dallal MMS, Foroushani AR, Douraghi M, Harati FA. 2015. Antibacterial activity of Lactobacillus spp. isolated from the feces of healthy infants against enteropathogenic bacteria. Anaerobe 34: 53-58.  https://doi.org/10.1016/j.anaerobe.2015.04.014
  7. Degeest B, Janssens B, De Vuyst L. 2001. Exopolysaccharide (EPS) biosynthesis by Lactobacillus sakei 0-1: production kinetics, enzyme activities and EPS yields. J. Appl. Microbiol. 91: 470-477.  https://doi.org/10.1046/j.1365-2672.2001.01404.x
  8. Donot F, Fontana A, Baccou J, Schorr-Galindo S. 2012. Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr. Polym. 87: 951-962.  https://doi.org/10.1016/j.carbpol.2011.08.083
  9. Ermis E, Poyraz E, Dertli E, Yilmaz MT. 2020. Optimization of exopolysaccharide production of Lactobacillus brevis E25 using RSM and characterization. Sakarya universitesi Fen Bilimleri Enstitusu Dergisi. 24: 151-160.  https://doi.org/10.16984/saufenbilder.545929
  10. Fuochi V, Li Volti G, Furneri PM. 2017. Probiotic properties of Lactobacillus fermentum strains isolated from human oral samples and description of their antibacterial activity. Curr. Pharm. Biotechnol. 18: 138-149.  https://doi.org/10.2174/1389201017666161229153530
  11. Garcia-Gonzalez N, Battista N, Prete R, Corsetti A. 2021. Health-promoting role of Lactiplantibacillus plantarum isolated from fermented foods. Microorganisms 9: 349. 
  12. Han Y, Liu E, Liu L, Zhang B, Wang Y, Gui M, et al. 2015. Rheological, emulsifying and thermostability properties of two exopolysaccharides produced by Bacillus amyloliquefaciens LPL061. Carbohydr. Polym. 115: 230-237.  https://doi.org/10.1016/j.carbpol.2014.08.044
  13. Jiang Y, Yang Z. 2018. A functional and genetic overview of exopolysaccharides produced by Lactobacillus plantarum. J. Funct. Foods 47: 229-240.  https://doi.org/10.1016/j.jff.2018.05.060
  14. Jose NM, Bunt CR, Hussain MA. 2015. Comparison of microbiological and probiotic characteristics of lactobacilli isolates from dairy food products and animal rumen contents. Microorganisms 3: 198-212.  https://doi.org/10.3390/microorganisms3020198
  15. Kim H, Kim J-S, Kim Y, Jeong Y, Kim J-E, Paek N-S, Kang C-H. 2020. Antioxidant and probiotic properties of Lactobacilli and Bifidobacteria of human origins. Biotechnol. Bioprocess Eng. 25: 421-430.  https://doi.org/10.1007/s12257-020-0147-x
  16. Levander F, Svensson M, Radstrom P. 2002. Enhanced exopolysaccharide production by metabolic engineering of Streptococcus thermophilus. Appl. Environ. Microbiol. 68: 784-790.  https://doi.org/10.1128/AEM.68.2.784-790.2002
  17. Li S, Huang R, Shah NP, Tao X, Xiong Y, Wei H. 2014. Antioxidant and antibacterial activities of exopolysaccharides from Bifidobacterium bifidum WBIN03 and Lactobacillus plantarum R315. J. Dairy Sci. 97: 7334-7343.  https://doi.org/10.3168/jds.2014-7912
  18. Liu Q, Huang X, Yang D, Si T, Pan S, Yang F. 2016. Yield improvement of exopolysaccharides by screening of the Lactobacillus acidophilus ATCC and optimization of the fermentation and extraction conditions. EXCLI J. 15: 119. 
  19. Macori G, Cotter PD. 2018. Novel insights into the microbiology of fermented dairy foods. Curr. Opin. Biotechnol. 49: 172-178.  https://doi.org/10.1016/j.copbio.2017.09.002
  20. Marco ML, Heeney D, Binda S, Cifelli CJ, Cotter PD, Foligne B, et al. 2017. Health benefits of fermented foods: microbiota and beyond. Curr. Opin. Biotechnol. 44: 94-102.  https://doi.org/10.1016/j.copbio.2016.11.010
  21. Mathur H, Beresford TP, Cotter PD. 2020. Health benefits of lactic acid bacteria (LAB) fermentates. Nutrients 12: 1679. 
  22. Mozzi F, Rollan G, de Giori GS, Font de Valdez G. 2001. Effect of galactose and glucose on the exopolysaccharide production and the activities of biosynthetic enzymes in Lactobacillus casei CRL 87. J. Appl. Microbiol. 91: 160-167.  https://doi.org/10.1046/j.1365-2672.2001.01367.x
  23. Nami Y, Abdullah N, Haghshenas B, Radiah D, Rosli R, Khosroushahi AY. 2014. Assessment of probiotic potential and anticancer activity of newly isolated vaginal bacterium Lactobacillus plantarum 5BL. Microbiol. Immunol. 58: 492-502.  https://doi.org/10.1111/1348-0421.12175
  24. Nehal F, Sahnoun M, Smaoui S, Jaouadi B, Bejar S, Mohammed S. 2019. Characterization, high production and antimicrobial activity of exopolysaccharides from Lactococcus lactis F-mou. Microb. Pathog. 132: 10-19.  https://doi.org/10.1016/j.micpath.2019.04.018
  25. Parvez S, Malik KA, Ah Kang S, Kim HY. 2006. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol. 100: 1171-1185.  https://doi.org/10.1111/j.1365-2672.2006.02963.x
  26. Patel A, Prajapat J. 2013. Food and health applications of exopolysaccharides produced by lactic acid bacteria. Adv. Dairy Res. 1-8. 
  27. Pingitore EV, Pessione A, Fontana C, Mazzoli R, Pessione E. 2016. Comparative proteomic analyses for elucidating metabolic changes during EPS production under different fermentation temperatures by Lactobacillus plantarum Q823. Int. J. Food Microbiol. 238: 96-102.  https://doi.org/10.1016/j.ijfoodmicro.2016.08.010
  28. Qian B, Xing M, Cui L, Deng Y, Xu Y, Huang M, Zhang S. 2011. Antioxidant, antihypertensive, and immunomodulatory activities of peptide fractions from fermented skim milk with Lactobacillus delbrueckii ssp. bulgaricus LB340. J. Dairy Res. 78: 72. 
  29. Silva LA, Lopes Neto JHP, Cardarelli HR. 2019. Exopolysaccharides produced by Lactobacillus plantarum: technological properties, biological activity, and potential application in the food industry. Annal. Microbiol. 69: 321-328.  https://doi.org/10.1007/s13213-019-01456-9
  30. Son J, Jeong KJ. 2020. Recent advances in synthetic biology for the engineering of lactic acid bacteria. Biotechnol. Bioprocess Eng. 25: 962-973.  https://doi.org/10.1007/s12257-020-0033-6
  31. Sorensen HM, Rochfort KD, Maye S, MacLeod G, Brabazon D, Loscher C, et al. 2022. Exopolysaccharides of Lactic acid bacteria: Production, purification and health benefits towards functional food. Nutrients 14: 2938. 
  32. Tallon R, Bressollier P, Urdaci MC. 2003. Isolation and characterization of two exopolysaccharides produced by Lactobacillus plantarum EP56. Res. Microbiol. 154: 705-712.  https://doi.org/10.1016/j.resmic.2003.09.006
  33. Wang J, Ji H, Zhang D, Liu H, Wang S, Shan D, et al. 2011. Assessment of probiotic properties of Lactobacillus plantarum ZLP001 isolated from gastrointestinal tract of weaning pigs. Afr. J. Biotechnol. 10: 11303-11308.  https://doi.org/10.5897/AJB11.255
  34. Wang L, Zhang H, Rehman MU, Mehmood K, Jiang X, Iqbal M, et al. 2018. Antibacterial activity of Lactobacillus plantarum isolated from Tibetan yaks. Microb. Pathog. 115: 293-298.  https://doi.org/10.1016/j.micpath.2017.12.077
  35. Wang X, Shao C, Liu L, Guo X, Xu Y, Lu X. 2017. Optimization, partial characterization and antioxidant activity of an exopolysaccharide from Lactobacillus plantarum KX041. Int. J. Biol. Macromol. 103: 1173-1184.  https://doi.org/10.1016/j.ijbiomac.2017.05.118
  36. Xu X, Peng Q, Zhang Y, Tian D, Zhang P, Huang Y, et al. 2020. A novel exopolysaccharide produced by Lactobacillus coryniformis NA-3 exhibits antioxidant and biofilm-inhibiting properties in vitro. Food Nutr. Res. 64. doi: 10.29219/fnr.v64.3744. eCollection 2020. 
  37. Zhang L, Liu C, Li D, Zhao Y, Zhang X, Zeng X, et al. 2013. Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int. J. Biol. Macromol. 54: 270-275.  https://doi.org/10.1016/j.ijbiomac.2012.12.037
  38. Zhang L, Zhao B, Liu C-J, Yang E. 2020. Optimization of biosynthesis conditions for the production of exopolysaccharides by Lactobacillus plantarum SP8 and the exopolysaccharides antioxidant activity test. Indian J. Microbiol. 60: 334-345.  https://doi.org/10.1007/s12088-020-00865-8
  39. Zhang Z, Liu Z, Tao X, Wei H. 2016. Characterization and sulfated modification of an exopolysaccharide from Lactobacillus plantarum ZDY2013 and its biological activities. Carbohydr. Polym. 153: 25-33. https://doi.org/10.1016/j.carbpol.2016.07.084