DOI QR코드

DOI QR Code

인간 유방암 세포주 BT-474와 MCF7에서 Bacteroides fragilis Toxin에 의한 E-cadherin 분절과 프로테아좀에 의한 분해

Bacteroides fragilis Toxin Induces Cleavage and Proteasome Degradation of E-cadherin in Human Breast Cancer Cell Lines BT-474 and MCF7

  • 강다혜 (연세대학교 소프트웨어디지털헬스케어융합대학 임상병리학과) ;
  • 유상현 (연세대학교 소프트웨어디지털헬스케어융합대학 임상병리학과) ;
  • 홍주은 (연세대학교 소프트웨어디지털헬스케어융합대학 임상병리학과) ;
  • 이기종 (연세대학교 소프트웨어디지털헬스케어융합대학 임상병리학과)
  • Da-Hye KANG (Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE campus) ;
  • Sang-Hyeon YOO (Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE campus) ;
  • Ju-Eun HONG (Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE campus) ;
  • Ki-Jong RHEE (Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE campus)
  • 투고 : 2022.12.23
  • 심사 : 2022.12.29
  • 발행 : 2023.03.31

초록

Enterotoxigenic Bacteroides fragilis (ETBF)는 염증성장 질환과 대장암을 유발하며 아연 의존성 metalloprotease인 B. fragilis toxin (BFT)를 분비한다. BFT는 epithelial cell의 E-cadherin을 80 kDa ectodomain과 33 kDa intracellular domain으로 분절을 유도한다. 생성된 E-cadherin intracellular domain은 순차적으로 γ-secretase에 의해 분절되어 28 kDa E-cadherin intracellular fragment은 아직까지 밝혀지지 않는 기작으로 분해된다. 본 연구에서는 BFT 유도 E-cadherin 분절로 인해 생성된 28 kDa E-cadherin intracellular fragment는 proteasome에 의해서 분해된다는 것을 확인하였다. 또한 BFT 유도 E-cadherin 분절 기작이 대장암 세포가 아닌 인간 유방암 세포주 BT-474 세포에서도 동일한 기작으로 일어남을 확인하였다. 마지막으로 staurosporine은 인간 유방암 세포주 MCF7 세포에서 E-cadherin의 분절을 유도하고 γ-secretase에 의한 E-cadherin intracellular domain의 분절이 일어났으나 proteasome에 의한 분해는 일어나지 않았다. 이러한 결과는 ETBF가 서식하는 대장이 아닌 유방에서도 BFT에 의한 E-cadherin 분절이 일어날 수 있으며 ETBF가 대장암 이외의 다른 암에도 관여할 수 있음을 시사한다.

Enterotoxigenic Bacteroides fragilis (ETBF) has been reported to promote colitis and colon cancer through the secretion of B. fragilis toxin (BFT), a zinc-dependent metalloprotease. In colonic epithelial cells, BFT induces the cleavage of E-cadherin into the 80 kDa ectodomain and the 33 kDa membrane-bound intracellular domain. The resulting membrane-tethered fragment is then cleaved by γ-secretase forming the 28 kDa E-cadherin intracellular fragment. The 28 kDa cytoplasmic fragment is then degraded by an unknown mechanism. In this study, we found that the 28 kDa E-cadherin intracellular fragment was degraded by the proteasome complex. In addition, we found that this sequential E-cadherin cleavage mechanism is found not only in colonic epithelial cells but also in the human breast cancer cell line, BT-474. Finally, we report that staurosporine also induces E-cadherin cleavage in the human breast cancer cell line, MCF7, through γ-secretase. However, further degradation of the 28 kDa E-cadherin intracellular domain is not dependent on the proteasome complex. These results suggest that the BFT-induced E-cadherin cleavage mechanism is conserved in both colonic and breast cancer cells. This observation indicates that ETBF may also play a role in the carcinogenesis of tissues other than the colon.

키워드

참고문헌

  1. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science. 2005;308:1635-1638. https://doi.org/10.1126/science.1110591 
  2. Pierce JV, Bernstein HD. Genomic diversity of enterotoxigenic strains of Bacteroides fragilis. PLoS One. 2016;11:e0158171. https://doi.org/10.1371/journal.pone.0158171 
  3. Hwang S, Gwon SY, Kim MS, Lee S, Rhee KJ. Bacteroides fragilis toxin induces IL-8 secretion in HT29/C1 cells through disruption of E-cadherin junctions. Immune Netw. 2013;13:213-217. https://doi.org/10.4110/in.2013.13.5.213 
  4. Lee CG, Hwang S, Gwon SY, Park C, Jo M, Hong JE, et al. Bacteroides fragilis toxin induces intestinal epithelial cell secretion of interleukin-8 by the E-cadherin/β-catenin/NF-κB dependent pathway. Biomedicines. 2022;10:827. https://doi.org/10.3390/biomedicines10040827 
  5. Goodwin AC, Destefano Shields CE, Wu S, Huso DL, Wu X, Murray-Stewart TR, et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci U S A. 2011;108:15354-15359. https://doi.org/10.1073/pnas.1010203108 
  6. Allen J, Hao S, Sears CL, Timp W. Epigenetic changes induced by Bacteroides fragilis toxin. Infect Immun. 2019;87:e00447-e00418. https://doi.org/10.1128/IAI.00447-18 
  7. Devaux CA, Mezouar S, Mege JL. The E-cadherin cleavage associated to pathogenic bacteria infections can favor bacterial invasion and transmigration, dysregulation of the immune response and cancer induction in humans. Front Microbiol. 2019;10:2598. https://doi.org/10.3389/fmicb.2019.02598 
  8. Koirala R, Priest AV, Yen CF, Cheah JS, Pannekoek WJ, Gloerich M, et al. Inside-out regulation of E-cadherin conformation and adhesion. Proc Natl Acad Sci U S A. 2021;118:e2104090118. https://doi.org/10.1073/pnas.2104090118 
  9. Troyanovsky SM. Adherens junction: the ensemble of specialized cadherin clusters. Trends Cell Biol. 2022. [Epub ahead of print]. doi: 10.1016/j.tcb.2022.08.007 
  10. Na TY, Schecterson L, Mendonsa AM, Gumbiner BM. The functional activity of E-cadherin controls tumor cell metastasis at multiple steps. Proc Natl Acad Sci U S A. 2020;117:5931-5937. https://doi.org/10.1073/pnas.1918167117 
  11. Damsky CH, Richa J, Solter D, Knudsen K, Buck CA. Identification and purification of a cell surface glycoprotein mediating intercellular adhesion in embryonic and adult tissue. Cell. 1983;34:455-466. https://doi.org/10.1016/0092-8674(83)90379-3 
  12. Yoo CB, Yun SM, Jo C, Koh YH. γ-Secretase-dependent cleavage of E-cadherin by staurosporine in breast cancer cells. Cell Commun Adhes. 2012;19:11-16. https://doi.org/10.3109/15419061.2012.665969 
  13. Hugo HJ, Wafai R, Blick T, Thompson EW, Newgreen DF. Staurosporine augments EGF-mediated EMT in PMC42-LA cells through actin depolymerisation, focal contact size reduction and Snail1 induction - a model for cross-modulation. BMC Cancer. 2009;9:235. https://doi.org/10.1186/1471-2407-9-235 
  14. Wu S, Rhee KJ, Zhang M, Franco A, Sears CL. Bacteroides fragilis toxin stimulates intestinal epithelial cell shedding and gamma-secretase-dependent E-cadherin cleavage. J Cell Sci. 2007;120(Pt 11):1944-1952. https://doi.org/10.1242/jcs.03455 Erratum in: J Cell Sci. 2007;120(Pt 20):3713. 
  15. Rios-Doria J, Day KC, Kuefer R, Rashid MG, Chinnaiyan AM, Rubin MA, et al. The role of calpain in the proteolytic cleavage of E-cadherin in prostate and mammary epithelial cells. J Biol Chem. 2003;278:1372-1379. https://doi.org/10.1074/jbc.M208772200 
  16. Grabowska MM, Day ML. Soluble E-cadherin: more than a symptom of disease. Front Biosci (Landmark Ed). 2012;17:1948-1964. https://doi.org/10.2741/4031 
  17. Bard JAM, Goodall EA, Greene ER, Jonsson E, Dong KC, Martin A. Structure and function of the 26S proteasome. Annu Rev Biochem. 2018;87:697-724. https://doi.org/10.1146/annurev-biochem-062917-011931 
  18. Rousseau A, Bertolotti A. Regulation of proteasome assembly and activity in health and disease. Nat Rev Mol Cell Biol. 2018;19: 697-712. https://doi.org/10.1038/s41580-018-0040-z 
  19. Hitchcock AL, Auld K, Gygi SP, Silver PA. A subset of membrane-associated proteins is ubiquitinated in response to mutations in the endoplasmic reticulum degradation machinery. Proc Natl Acad Sci U S A. 2003;100:12735-12740. https://doi.org/10.1073/pnas.2135500100 
  20. Asakura T, Yamaguchi N, Ohkawa K, Yoshida K. Proteasome inhibitor-resistant cells cause EMT-induction via suppression of E-cadherin by miR-200 and ZEB1. Int J Oncol. 2015;46:2251-2260. https://doi.org/10.3892/ijo.2015.2916 
  21. Yang JY, Zong CS, Xia W, Wei Y, Ali-Seyed M, Li Z, et al. MDM2 promotes cell motility and invasiveness by regulating E-cadherin degradation. Mol Cell Biol. 2006;26:7269-7282. https://doi.org/10.1128/MCB.00172-06 
  22. Kisselev AF, Callard A, Goldberg AL. Importance of the different proteolytic sites of the proteasome and the efficacy of inhibitors varies with the protein substrate. J Biol Chem. 2006;281:8582-8590. https://doi.org/10.1074/jbc.M509043200 
  23. Kortuem KM, Stewart AK. Carfilzomib. Blood. 2013;121:893-897. https://doi.org/10.1182/blood-2012-10-459883 
  24. Quaglio AEV, Grillo TG, De Oliveira ECS, Di Stasi LC, Sassaki LY. Gut microbiota, inflammatory bowel disease and colorectal cancer. World J Gastroenterol. 2022;28:4053-4060. https://doi.org/10.3748/wjg.v28.i30.4053 
  25. Wu S, Powell J, Mathioudakis N, Kane S, Fernandez E, Sears CL. Bacteroides fragilis enterotoxin induces intestinal epithelial cell secretion of interleukin-8 through mitogen-activated protein kinases and a tyrosine kinase-regulated nuclear factor-kappaB pathway. Infect Immun. 2004;72:5832-5839. https://doi.org/10.1128/IAI.72.10.5832-5839.2004 
  26. Park CH, Eun CS, Han DS. Intestinal microbiota, chronic inflammation, and colorectal cancer. Intest Res. 2018;16:338-345. https://doi.org/10.5217/ir.2018.16.3.338 
  27. Cao Y, Wang Z, Yan Y, Ji L, He J, Xuan B, et al. Enterotoxigenic Bacteroides fragilis promotes intestinal inflammation and malignancy by inhibiting exosome-packaged miR-149-3p. Gastroenterology. 2021;161:1552-1566.e12. https://doi.org/10.1053/j.gastro.2021.08.003 
  28. Hieken TJ, Chen J, Hoskin TL, Walther-Antonio M, Johnson S, Ramaker S, et al. The microbiome of aseptically collected human breast tissue in benign and malignant disease. Sci Rep. 2016;6:30751. https://doi.org/10.1038/srep30751 
  29. Pickard JM, Zeng MY, Caruso R, Nunez G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev. 2017;279:70-89. https://doi.org/10.1111/imr.12567 
  30. Parida S, Wu S, Siddharth S, Wang G, Muniraj N, Nagalingam A, et al. A procarcinogenic colon microbe promotes breast tumorigenesis and metastatic progression and concomitantly activates Notch and β-catenin axes. Cancer Discov. 2021;11:1138-1157. https://doi.org/10.1158/2159-8290.CD-20-0537 
  31. Lehembre F, Yilmaz M, Wicki A, Schomber T, Strittmatter K, Ziegler D, et al. NCAM-induced focal adhesion assembly: a functional switch upon loss of E-cadherin. EMBO J. 2008;27:2603-2615. https://doi.org/10.1038/emboj.2008.178 
  32. Pohl C, Dikic I. Cellular quality control by the ubiquitin-proteasome system and autophagy. Science. 2019;366:818-822. https://doi.org/10.1126/science.aax3769 
  33. Pei J, Wang G, Feng L, Zhang J, Jiang T, Sun Q, et al. Targeting lysosomal degradation pathways: new strategies and techniques for drug discovery. J Med Chem. 2021;64:3493-3507. https://doi.org/10.1021/acs.jmedchem.0c01689 
  34. Steinhusen U, Weiske J, Badock V, Tauber R, Bommert K, Huber O. Cleavage and shedding of E-cadherin after induction of apoptosis. J Biol Chem. 2001;276:4972-4980. https://doi.org/10.1074/jbc.M006102200 
  35. Wu WJ, Hirsch DS. Mechanism of E-cadherin lysosomal degradation. Nat Rev Cancer. 2009;9:143; author reply 143. https://doi.org/10.1038/nrc2521-c1 
  36. Oerlemans R, Franke NE, Assaraf YG, Cloos J, van Zantwijk I, Berkers CR, et al. Molecular basis of bortezomib resistance: proteasome subunit beta5 (PSMB5) gene mutation and overexpression of PSMB5 protein. Blood. 2008;112:2489-2499. https://doi.org/10.1182/blood-2007-08-104950 
  37. Wu S, Lim KC, Huang J, Saidi RF, Sears CL. Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E-cadherin. Proc Natl Acad Sci U S A. 1998;95:14979-14984. https://doi.org/10.1073/pnas.95.25.14979 
  38. Heerboth S, Housman G, Leary M, Longacre M, Byler S, Lapinska K, et al. EMT and tumor metastasis. Clin Transl Med. 2015;4:6. https://doi.org/10.1186/s40169-015-0048-3