DOI QR코드

DOI QR Code

Dynamic Computation Offloading Based on Q-Learning for UAV-Based Mobile Edge Computing

  • Shreya Khisa (Dept. of Information and Systems Engineering, Concordia University) ;
  • Sangman Moh (Dept. of Computer Engineering, Chosun University)
  • 투고 : 2023.02.10
  • 심사 : 2023.03.14
  • 발행 : 2023.04.30

초록

Emerging mobile edge computing (MEC) can be used in battery-constrained Internet of things (IoT). The execution latency of IoT applications can be improved by offloading computation-intensive tasks to an MEC server. Recently, the popularity of unmanned aerial vehicles (UAVs) has increased rapidly, and UAV-based MEC systems are receiving considerable attention. In this paper, we propose a dynamic computation offloading paradigm for UAV-based MEC systems, in which a UAV flies over an urban environment and provides edge services to IoT devices on the ground. Since most IoT devices are energy-constrained, we formulate our problem as a Markov decision process considering the energy level of the battery of each IoT device. We also use model-free Q-learning for time-critical tasks to maximize the system utility. According to our performance study, the proposed scheme can achieve desirable convergence properties and make intelligent offloading decisions.

키워드

과제정보

This study was supported in part by research fund from Chosun University (2022).

참고문헌

  1. S. M. A. Huda and S. Moh, "Survey on computation offloading in UAV-enabled mobile edge computing," Journal of Network and Computer Applications, vol. 201, article no. 103341, pp. 1-26, 2022 https://doi.org/10.1016/j.jnca.2022.103341
  2. S. Poudel and S. Moh, "Task assignment algorithms for unmanned aerial vehicle networks: A comprehensive survey," Vehicular Communications, vol. 35, article no. 100469, pp. 1-29, 2022 https://doi.org/10.1016/j.vehcom.2022.100469
  3. S. Mao, S. Leng, K. Yang, X. Huang and Q. Zhao, "Fair energy-efficient scheduling in wireless powered full-duplex mobile-edge computing systems," Proc. of 2017 IEEE Global Communications Conf., pp. 1-6, 2017
  4. C. You, K. Huang, H. Chae and B.-H. Kim, "Energy-efficient resource allocation for mobile-edge computation offloading," IEEE Trans. on Wireless Communications, vol. 16, no. 3, pp. 1397-1411, 2016 https://doi.org/10.1109/TWC.2016.2633522
  5. Y. Zeng, R. Zhang and T. J. Lim, "Wireless communications with unmanned aerial vehicles: Opportunities and challenges," IEEE Communications Magazine, vol. 54, no. 5, pp. 36-42, 2016 https://doi.org/10.1109/MCOM.2016.7470933
  6. S. W. Kim, "Prototype design for unmanned aerial vehicle-based big data processing," Smart Media Journal, vol. 5, no. 2, pp. 51-58, 2016
  7. N. H. Kim, "Development of atmospheric environment information collection system using drone," Smart Media Journal, vol. 7, no. 4, pp. 44-51, 2018
  8. Y. Zhang, B. Kim, J. Sun and J. Lee, "Searching the damaged pine trees from wilt disease based on deep learning," Smart Media Journal, vol. 9, no. 3, pp. 46-51, 2020 https://doi.org/10.30693/SMJ.2020.9.3.46
  9. S. Garg, A. Singh, S. Batra, N. Kumar and L. T. Yang, "UAV-empowered edge computing environment for cyber-threat detection in smart vehicles," IEEE Network, vol. 32, no. 3, pp. 42-51, 2018 https://doi.org/10.1109/mnet.2018.1700286
  10. F. Zhou, Y. Wu, R. Q. Hu and Y. Qian, "Computation rate maximization in UAV-enabled wireless-powered mobile-edge computing systems," IEEE Journal on Selected Areas in Communications, vol. 36, no. 9, pp. 1927-1941, 2018 https://doi.org/10.1109/JSAC.2018.2864426
  11. L. Yang, H. Yao, J. Wang, C. Jiang, A. Benslimane and Y. Liu, "Multi-UAV-enabled load-balance mobile-edge computing for IoT networks," IEEE Internet of Things Journal, vol. 7, no. 8, pp. 6898-6908, 2020 https://doi.org/10.1109/JIOT.2020.2971645
  12. Q. Liu, L. Shi, L. Sun, J. Li, M. Ding and F. Shu, "Path planning for UAV-mounted mobile edge computing with deep reinforcement learning," IEEE Trans. on Vehicular Technology, vol. 69, no. 5, pp. 5723-5728, 2020 https://doi.org/10.1109/tvt.2020.2982508
  13. S. Jeong, O. Simeone and J. Kang, "Mobile edge computing via a UAV-mounted cloudlet: Optimization of bit allocation and path planning," IEEE Trans. on Vehicular Technology, vol. 67, no. 3, pp. 2049-2063, 2017 https://doi.org/10.1109/tvt.2017.2706308
  14. Q. Hu, Y. Cai, G. Yu, Z. Qin, M. Zhao and G. Y. Li, "Joint offloading and trajectory design for UAV-enabled mobile edge computing systems," IEEE Internet of Things Journal, vol. 6, no. 2, pp. 1879-1892, 2018 https://doi.org/10.1109/jiot.2018.2878876
  15. T. Zhang, Y. Xu, J. Loo, D. Yang and L. Xiao, "Joint computation and communication design for UAV-assisted mobile edge computing in IoT," IEEE Trans. on Industrial Informatics, vol. 16, no. 8, pp. 5505-5516, 2019 https://doi.org/10.1109/TII.2019.2948406
  16. J. Zhang, et al., "Stochastic computation offloading and trajectory scheduling for UAV-assisted mobile edge computing," IEEE Internet of Things Journal, vol. 6, no. 2, pp. 3688-3699, 2018 https://doi.org/10.1109/JIOT.2018.2890133
  17. S. Zhu, L. Gui, D. Zhao, N. Cheng, Q. Zhang and X. Lang, "Learning-based computation offloading approaches in UAVs-assisted edge computing," IEEE Trans. on Vehicular Technology, vol. 70, no. 1, pp. 928-944, 2021 https://doi.org/10.1109/TVT.2020.3048938
  18. A. Al-Hourani, S. Kandeepan and S. Lardner, "Optimal LAP altitude for maximum coverage," IEEE Wireless Communications Letters, vol. 3, no. 6, pp. 569-572, 2014  https://doi.org/10.1109/LWC.2014.2342736