DOI QR코드

DOI QR Code

Eligibility Verification based on Immutable Personal Information without Revealing the Owner's Identity

불변 개인정보에 기반하여 소유자 신원 드러나지 않도록 적격성 검증

  • Received : 2023.02.27
  • Accepted : 2023.03.21
  • Published : 2023.04.30

Abstract

When an individual needs to prove eligibility, it is sufficient to know whether or not s/he meets the eligibility, but any existing method inevitably exposes the identity of the owner or unnecessary additional information in the process of providing personal information. In this paper, among the immutable items of personal information such as gender, date of birth, and place of birth, we propose a method in which the owner provides only essential item(s) to the eligibility verifier with each iterm marked on one option among multiple choices. In this way, the eligibility verifier can access the combination of items stored in the blockchain with the consent of the information owner, and can safely store the access history by requesting recording in the blockchain again. In the proposed method, the user does not worry about his/her identity being revealed or his/her personal information being overly exposed, and the eligibility verifier can check only necessary items and search later records without separately storing the records.

온/오프라인상으로 개인이 적격성 증명을 해야 하는 경우, 자격 충족 여부를 알 수 있으면 충분함에도, 기존 어떤 방식도 개인정보 제공 과정에서 어쩔 수 없이 소유자 신원을 드러내거나 불필요한 추가 정보를 노출하게 된다. 본 논문에서는, 개인정보의 성별, 생년, 출생지 등 불변인 항목 중, 소유자가 적격성 검증자에게 꼭 필요한 항목(들)만을 각각 다수 선택지 중 하나의 값을 지정하여 제공하는 방식을 제안한다. 이 방식에서, 적격성 검증자는 정보 소유자의 동의로 블록체인에 저장된 개인정보 항목들 조합에 접근할 수 있으며, 접근 내역을 다시 블록체인에 기록 요청하여 안전하게 저장할 수 있다. 제안 방식을 통해 사용자는 자신의 신원이 드러나거나 개인정보가 과다하게 노출될 것을 우려하지 않으며, 적격성 검증자는 필요한 정보만을 확인하되 그 기록을 별도 저장하지 않고도 추후 기록을 조회할 수 있게 된다.

Keywords

Acknowledgement

이 논문은 2022학년도 홍익대학교 학술연구진흥비에 의하여 지원되었음.

References

  1. P. B. Ronne, P. Y. A. Ryan, M.-L. Zollinger, "Electryo, In-person Voting with Transparent Voter Verifiability and Eligibility Verifiability," arXiv 2021, arXiv:2105.14783 [cs.CR]
  2. T. Nguyen and M. T. Thai, "zVote: A Blockchain-based Privacy-preserving Platform for Remote E-voting," Proc. IEEE Int'l Conf. on Communications, pp.4745-4750, 2022.
  3. J. C. Lee, M. Dell, M.S.G. Canche, A. Monday and A. Klafehn, "The Hidden Costs of Corroboration: Estimating the Effects of Financial Aid Verification on College Enrollment," Educational Evaluation and Policy Analysis, Vol. 43, No. 2, pp. 233-252, June 2021. https://doi.org/10.3102/0162373721989304
  4. T. Ekin and G. LaKomski, "Risk based Payment Integrity Evaluation," Proc. of 2020 Int'l Conf. on Data Analytics for Business and Industry (ICDABI), pp. 162-168, 2020.
  5. P. M. Orrenius, M. Zavodny and S. Greer, "Who Signs Up for E-Verify? Insights from DHS Enrollment Records," International Migration Review, Vol. 54, No. 4, pp. 1184-1211, 2020. https://doi.org/10.1177/0197918320901461
  6. R. Pozzar, M. J. Hammer, M. Underhill-Blazey, A. A. Wright, J. A. Tulsky, F. Hong, D. A. Gundersen and D. L. Berry, "Threats of Bots and Other Bad Actors to Data Quality Following Research Participant Recruitment through Social Media: Cross-Sectional Questionnaire," Jr. of Medical Internet Research, Vol. 22, Iss. 10, 2020.
  7. J. V. Glazer, K. MacDonnell, C. Frederick, K. Ingersoll and L. M. Ritterband, "Liar! Liar! Identifying Eligibility Fraud by Applicants in Digital Health Research," Internet Interventions, Vol. 25, Art. 100401, Sept. 2021.
  8. G. Cherubin, R. Jansen and C. Troncoso, "Online Website Fingerprinting: Evaluating Website Fingerprinting Attacks on Tor in the Real World," Proc. 31st USENIX Security Symp., pp. 753-770, 2022.
  9. J.-C. Park, "Delegated Provision of Personal Information and Storage of Provided Information on a Blockchain Ensuring Data Confidentiality," Smart Media Journal, Vol. 11, No. 10, pp.76-88, November 2022. https://doi.org/10.30693/SMJ.2022.11.10.76