DOI QR코드

DOI QR Code

RPA 로그 마이닝 기반 프로세스 자동화 현황 분석 - 중소기업대상 실증 연구

RPA Log Mining-based Process Automation Status Analysis - An Empirical Study on SMEs

  • 강영식 (명지대학교 경영정보학과) ;
  • 정진우 ((주)인프라시스템) ;
  • 심선영 (성신여자대학교 경영학과)
  • 투고 : 2023.02.06
  • 심사 : 2023.02.28
  • 발행 : 2023.03.31

초록

프로세스 마이닝에서는 일반적으로 SAP ERP와 같은 정보시스템이 남기는 시스템의 디폴트 로그를 분석해왔지만, RPA라는 자동화 소프트웨어의 사용이 확대됨에 따라 RPA 봇이 남기는 로그를 활용할 수 있게 되었다. 본 연구에서는 RPA 봇을 국내 제조기업(코스메틱 분야) 3개 사의 업무에 적용하여 로그를 남긴 후 분석함으로써 현업의 RPA 자동화에 대한 실제 현황을 파악하였다. Uipath와 파이썬을 이용하여 RPA 봇을 구현하고 로그를 남겼으며, 봇이 남긴 로그의 분석을 위해서는 프로세스 마이닝 전용 소프트웨어인 Disco를 사용하였다. 프로세스 마이닝을 통해 봇의 활용성과 성능이라는 두 측면에서 로그 분석을 해 본 결과, 개선 요구사항을 찾아볼 수 있었다. 특히 봇의 활용성 측면에서 활용도를 높여야 하는 경우가 많았고, 수행과정에서 오류나 예외발생 및 수행시간이 길어지는 구간이 발견된다는 점에서 모든 사례에서 개선 지점이 존재하고 있는 것으로 분석되었다. 이러한 분석은 설문이나 인터뷰에 의존했던 기존의 정성적 방법이 아닌 데이터를 활용한 증거 기반의 분석으로 봇의 자동화 현황과 성과를 분석한다는 점에서 매우 과학적이며 또 현업의 업무에 적용된 사례라는 점에서 실증적 의미를 갖는다. 나아가 '로그 마이닝 기반 자동화 현황 분석'은 봇 행동 최적화를 위한 의미있는 기초 단계로, 궁극적으로 프로세스 경영을 수행할 수 있는 토대가 된다고 볼 수 있다.

Process mining has generally analyzed the default logs of Information Systems such as SAP ERP, but as the use of automation software called RPA expands, the logs by RPA bots can be utilized. In this study, the actual status of RPA automation in the field was identified by applying RPA bots to the work of three domestic manufacturing companies (cosmetic field) and analyzing them after leaving logs. Using Uipath and Python, we implemented RPA bots and wrote logs. We used Disco, a software dedicated to process mining to analyze the bot logs. As a result of log analysis in two aspects of bot utilization and performance through process mining, improvement requirements were found. In particular, we found that there was a point of improvement in all cases in that the utilization of the bot and errors or exceptions were found in many cases of process. Our approach is very scientific and empirical in that it analyzes the automation status and performance of bots using data rather than existing qualitative methods such as surveys or interviews. Furthermore, our study will be a meaningful basic step for bot behavior optimization, and can be seen as the foundation for ultimately performing process management.

키워드

과제정보

이 논문은 2021년 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구임 (NRF-2021S1A5A2A01069486)

참고문헌

  1. 강영식, 이현우, & 김병수. (2018). 프로세스 마이닝과 딥러닝을 활용한 구매 프로세스의 적기 입고 예측에 관한 연구. Information Systems Review, 20(4), 25-41.
  2. 백승헌. (2020), RPA 하이퍼오토메이션 플랫폼, 플랜비디자인.
  3. 심선영, 강영식, & 남명기. (2021). 포스트코로나 시대의 사무.행정 자동화를 위한 RPA 활용 방안: 현황 및 제언. Information Systems Review, 23(2), 93-118.
  4. 정진우, 이영신, 이보경, 김정연, & 강영식. (2018). 프로세스 마이닝을 활용한 국내 중소기업 ERP 프로세스 분석에 관한 연구: 국내 화장품 제조기업의 사례를 중심으로. Information Systems Review, 20(1), 81-98.
  5. 이투데이. (2020.07.20). KPMG, MS와 손잡고 '인공지능 감사' 기술 개발..."5년간 6조원 투자" https://www.intn.co.kr/news/articleView.html?idxno=2009301.
  6. 행정안전부. (2023), 범정부 RPA적용 가이드라인.
  7. Adriansyah, A., van Dongen, B. F., & van der Aalst, W. M. (2011, August). Conformance checking using cost-based fitness analysis. In 2011 ieee 15th international enterprise distributed object computing conference (pp. 55-64). IEEE.
  8. Asatiani, A., & Penttinen, E. (2016). Turning robotic process automation into commercial success-Case OpusCapita. Journal of Information Technology Teaching Cases, 6(20, 67-74.. https://doi.org/10.1057/jittc.2016.5
  9. Corradini, F., Marcantoni, F., Morichetta, A., Polini, A., Re, B., & Sampaolo, M. (2019). Enabling auditing of smart contracts through process mining. In From Software Engineering to Formal Methods and Tools, and Back (pp. 467-480). Springer, Cham.
  10. de Murillas, E. G. L., Reijers, H. A., & van der Aalst, W. M. (2019). Connecting databases with process mining: a meta model and toolset. Software & Systems Modeling, 18(2), 1209-1247. https://doi.org/10.1007/s10270-018-0664-7
  11. Elzinga, D. J., Horak, T., Lee, C. Y., & Bruner, C. (1995). Business process management: survey and methodology. IEEE transactions on engineering management, 42(2), 119-128 https://doi.org/10.1109/17.387274
  12. Everest Group (2017). Robotic Process Automation (RPA) Evolution | Market Insights. https://www.everestgrp.com/2017-04-robotic-process-automation-rpa-evolution-market-insights-39370.html/
  13. Evermann, J., Rehse, J. R., & Fettke, P. (2017). Predicting process behaviour using deep learning. Decision Support Systems, 100, 129-140. https://doi.org/10.1016/j.dss.2017.04.003
  14. Gartner (2020). Top 10 Strategic Technology Trends for 2020.
  15. Gartner (2022). Top Strategic Technology Trends for 2022.
  16. Geyer-Klingeberg, J., Nakladal, J., Baldauf, F., & Veit, F. (2018, July). Process Mining and Robotic Process Automation: A Perfect Match. In BPM (Dissertation/Demos/Industry) (pp. 124-131).
  17. Hallikainen, P., Bekkhus, R., & Pan, S. L. (2018). How OpusCapita Used Internal RPA Capabilities to Offer Services to Clients. MIS Quarterly Executive, 17(1).
  18. Hammer, M. (1990a) Beyond Reengineering: How the Process-Centered Organization is Changing Our Work and Our Lives (New York: Harper Collins).
  19. Hammer, M. (1990b). Reengineering work: Don't automate, obliterate. Harvard Business Review, 68(4), 104-112.
  20. Jans, M., Alles, M. G., & Vasarhelyi, M. A. (2014). A field study on the use of process mining of event logs as an analytical procedure in auditing. The Accounting Review, 89(5), 1751-1773. https://doi.org/10.2308/accr-50807
  21. Lacity, M., & Willcocks, L. P. (2018). Robotic process and cognitive automation: The next phase. SB Publishing.
  22. Leno, V., Polyvyanyy, A., La Rosa, M., Dumas, M., & Maggi, F. M. (2019, January). Action logger: Enabling process mining for robotic process automation. CEUR Workshop Proceedings.
  23. Madakam, S., Holmukhe, R. M., & Jaiswal, D. K. (2019). The future digital work force: robotic process automation (RPA). JISTEM-Journal of Information Systems and Technology Management, 16.
  24. Moffitt, K. C., Rozario, A. M., & Vasarhelyi, M. A. (2018). Robotic process automation for auditing. Journal of Emerging Technologies in Accounting, 15(1), 1-10. https://doi.org/10.2308/jeta-10589
  25. Oesterreich, M. & Avasthy, T. (2020). [Forrester] The future of Work: A pandemic spotlight. https://www.uipath.com/resources/automation-analyst-reports/pandemic-impacting-future-of-work-forrester-report
  26. Rama-Maneiro, E., Vidal, J. C., & Lama, M. (2020). Deep Learning for Predictive Business Process Monitoring: Review and Benchmark. arXiv preprint arXiv:2009.13251.
  27. Rashid, A., Butt, N. A., Choudhary, N. R., Choudhary, R., & Jabeen, H. (2019). Process Mining Approach Towards Optimization of ERP Business Processes: A Case Study of Healthcare. University of Sindh Journal of Information and Communication Technology, 3(1), 7-16.
  28. Santoro, F. M., Revoredo, K. C., Costa, R. M., & Barboza, T. M. (2020). Process Mining Techniques in Internal Auditing: A Stepwise Case Study. iSys-Revista Brasileira de Sistemas de Informacao, 13(4), 48-76. https://doi.org/10.5753/isys.2020.823
  29. Schmitz, M., Dietze, C., & Czarnecki, C. (2019). Enabling digital transformation through robotic process automation at Deutsche Telekom. In Digitalization Cases (pp. 15-33). Springer, Cham.
  30. Teinemaa, I., Dumas, M., Rosa, M. L., & Maggi, F. M. (2019). Outcome-oriented predictive process monitoring: Review and benchmark. ACM Transactions on Knowledge Discovery from Data (TKDD), 13(2), 1-57. https://doi.org/10.1145/3301300
  31. Teunissen, T. (2019). Success factors for RPA application in small and medium sized enterprises (Bachelor's thesis, University of Twente).
  32. van der Aalst, W. (2011). Process mining: discovery, conformance and enhancement of business processes (Vol. 2). Heidelberg: Springer.
  33. van der Aalst, W. (2016). Data science in action. In Process mining (pp. 3-23). Springer, Berlin, Heidelberg.
  34. van der Aalst, W. M., Bichler, M., & Heinzl, A. (2018). Robotic process automation. Business & information systems engineering, 60, 269-272. https://doi.org/10.1007/s12599-018-0542-4
  35. Wellmann, C., Stierle, M., Dunzer, S., & Matzner, M. (2020, September). A framework to evaluate the viability of robotic process automation for business process activities. International Conference on Business Process Management (pp. 200-214). Springer, Cham.
  36. Werner, M., & Gehrke, N. (2019). Identifying the absence of effective internal controls: An alternative approach for internal control audits. Journal of Information Systems, 33(2), 205-222. https://doi.org/10.2308/isys-52112
  37. Wewerka, J., & Reichert, M. (2020). Robotic Process Automation--A Systematic Literature Review and Assessment Framework. arXiv preprint arXiv:2012.11951.
  38. Willcocks, L., Lacity, M., & Craig, A. (2017). Robotic process automation: strategic transformation lever for global business services?. Journal of Information Technology Teaching Cases, 7(1), 17-28. https://doi.org/10.1057/s41266-016-0016-9
  39. Zairi, M. (1997) Business process management: a boundaryless approach to modern competitiveness, Business Process Management Journal, 3(1), pp. 64-80. https://doi.org/10.1108/14637159710161585
  40. Zairi, M., & Sinclair, D. (1995). Business process re-engineering and process management: a survey of current practice and future trends in integrated management. Business Process Re-engineering & Management Journal, 1(1), 8-30. https://doi.org/10.1108/14637159510798248
  41. Zerbino, P., Aloini, D., Dulmin, R., & Mininno, V. (2018). Process-mining-enabled audit of information systems: Methodology and an application. Expert Systems with Applications, 110, 80-92. https://doi.org/10.1016/j.eswa.2018.05.030