Acknowledgement
이 논문은 2023년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원(No.2019-0-00421, 인공지능대학원지원(성균관대학교))과 정보통신산업진흥원의 지원(No.S0102-23-1012, 헬스케어 AI 융합 연구개발)을 받아 수행된 연구임
References
- 김기태, 이보미, 김종우. (2017). 이진 분류문제에서의 딥러닝 알고리즘의 활용 가능성 평가. 지능정보연구, 23(1), 95-108. https://doi.org/10.13088/JIIS.2017.23.1.095
- 김호준. (2010). CNN 모델과 FMM 신경망을 이용한 동적 수신호 인식 기법. 지능정보연구, 16(2), 95-108.
- 안성만. (2016). 딥러닝의 모형과 응용사례. 지능정보연구, 22(2), 127-142. https://doi.org/10.13088/JIIS.2016.22.2.127
- 장승우, & 김광수. (2021). 가청 주파수를 활용한 비가시 영역 복원 기초 연구. 한국통신학회 학술대회논문집, 1088-1089.
- Alakwaa, W., Nassef, M., & Badr, A. (2017). Lung cancer detection and classification with 3D convolutional neural network (3D-CNN). International Journal of Advanced Computer Science and Applications, 8(8).
- Boger-Lombard, J., Slobodkin, Y., & Katz, O. (2022). Non-Line-of-Sight Passive Acoustic Localization Around Corners. arXiv preprint arXiv:2211.03453.
- Grau Chopite, J., Hullin, M. B., Wand, M., & Iseringhausen, J. (2020). Deep non-line-of-sight reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 960-969).
- Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., & Scholkopf, B. (1998). Support vector machines. IEEE Intelligent Systems and their applications, 13(4), 18-28. https://doi.org/10.1109/5254.708428
- Kan, R., Wang, M., Zhou, Z., Zhang, P., & Qiu, H. (2022). Acoustic Signal NLOS Identification Method Based on Swarm Intelligence Optimization SVM for Indoor Acoustic Localization. Wireless Communications and Mobile Computing, 2022.
- Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
- Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90. https://doi.org/10.1145/3065386
- LeCun, Y. (2015). LeNet-5, convolutional neural networks. URL: http://yann.lecun.com/exdb/lenet, 20(5), 14.
- Lindell, D. B., Wetzstein, G., & Koltun, V. (2019). Acoustic non-line-of-sight imaging. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 6780-6789).
- Liu, X., Bauer, S., & Velten, A. (2020). Phasor field diffraction based reconstruction for fast non-line-of-sight imaging systems. Nature communications, 11(1), 1645.
- Mann, S., & Haykin, S. (1991, June). The chirplet transform: A generalization of Gabor's logon transform. In Vision interface (Vol. 91, pp. 205-212). Princeton, NJ, USA: Citeseer.
- Oord, A. V. D., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., ... & Kavukcuoglu, K. (2016). Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499.
- Rao, C., & Liu, Y. (2020). Three-dimensional convolutional neural network (3D-CNN) for heterogeneous material homogenization. Computational Materials Science, 184, 109850.
- Raspaud, M., Viste, H., & Evangelista, G. (2009). Binaural source localization by joint estimation of ILD and ITD. Ieee transactions on audio, speech, and language processing, 18(1), 68-77. https://doi.org/10.1109/TASL.2009.2023644
- Tang, W., Long, G., Liu, L., Zhou, T., Jiang, J., & Blumenstein, M. (2020). Rethinking 1d-cnn for time series classification: A stronger baseline. arXiv preprint arXiv:2002.10061, 1-7.
- Thaler, L. and Goodale, M. A. (2016). Echolocation in humans: an overview. Wiley Interdisciplinary Reviews: Cognitive Science, 7(6), 382-393. https://doi.org/10.1002/wcs.1408
- Velten, A., Willwacher, T., Gupta, O., Veeraraghavan, A., Bawendi, M. G., & Raskar, R. (2012). Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nature communications, 3(1), 745.
- Wu, C., Liu, J., Huang, X., Li, Z. P., Yu, C., Ye, J. T., ... & Pan, J. W. (2021). Non-line-of-sight imaging over 1.43 km. Proceedings of the National Academy of Sciences, 118(10), e2024468118.
- Xu, B., Wang, N., Chen, T., & Li, M. (2015). Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853.
- Xie, J., Hu, K., Zhu, M., Yu, J., & Zhu, Q. (2019). Investigation of different CNN-based models for improved bird sound classification. IEEE Access, 7, 175353-175361. https://doi.org/10.1109/access.2019.2957572
- Zhang, L., Huang, D., Wang, X., Schindelhauer, C., & Wang, Z. (2017). Acoustic NLOS identification using acoustic channel characteristics for smartphone indoor localization. Sensors, 17(4), 727.
- Zhang, Z., & Sabuncu, M. (2018). Generalized cross entropy loss for training deep neural networks with noisy labels. Advances in neural information processing systems, 31.
- Kim, C. S. and J. H. Lee, Syntactic Pattern Recognition, Prentice-Hall, New Jersey, 1985.
- Rohlf, F. J., tpsDig Version 2.10, Department of Ecology and Evolution, State University of New York at Stony Brook, 2006. Available at http://life.bio.sunysb.edu/morph/ (Downloaded 29 September, 2008).
- Wu, K.-L., C. C. Agarwal, and P. S. Yu, "Personalization with dynamic profiler," Proceedings of the Third International Workshop on Advanced Issues of E-commerce and Web-based Information Systems, (2001), 12~20.