과제정보
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2021R1G1A1094159) and by the Korea Nazarene University Research Grants (2022).
참고문헌
- Packard CJ, Boren J and Taskinen MR (2020) Causes and consequences of hypertriglyceridemia. Front Endocrinol (Lausanne) 11, 252
- Kim HY, Hong MH, Kim KW et al (2020) Improvement of hypertriglyceridemia by roasted nelumbinis folium in high fat/high cholesterol diet rat model. Nutrients 12, 3859
- Lei L, Li H, Yan F and Xiao Y (2013) Hyperlipidemia impaired innate immune response to periodontal pathogen porphyromonas gingivalis in apolipoprotein E knockout mice. PLoS One 8, e71849
- Chiu S and Bharat A (2016) Role of monocytes and macrophages in regulating immune response following lung transplantation. Curr Opin Organ Transplant 21, 239-245 https://doi.org/10.1097/MOT.0000000000000313
- Lopez S, Bermudez B, Pacheco YM et al (2007) Dietary oleic and palmitic acids modulate the ratio of triacylglycerols to cholesterol in postprandial triacylglycerol-rich lipoproteins in men and cell viability and cycling in human monocytes. J Nutr 137, 1999-2005 https://doi.org/10.1093/jn/137.9.1999
- Norbury CJ and Zhivotovsky B (2004) DNA damage-induced apoptosis. Oncogene 23, 2797-2808 https://doi.org/10.1038/sj.onc.1207532
- Yeo HJ, Shin MJ, Kim DW, Kwon HY, Eum WS and Choi SY (2021) Tat-CIAPIN1 protein prevents against cytokine-induced cytotoxicity in pancreatic RINm5F beta-cells. BMB Rep 54, 458-463 https://doi.org/10.5483/BMBRep.2021.54.9.040
- Kumar S (2009) Caspase 2 in apoptosis, the DNA damage response and tumour suppression: enigma no more? Nat Rev Cancer 9, 897-903 https://doi.org/10.1038/nrc2745
- Vigneswara V and Ahmed Z (2020) The role of caspase-2 in regulating cell fate. Cells 9, 1259
- Harangi M, Remenyik EE, Seres I, Varga Z, Katona E and Paragh G (2002) Determination of DNA damage induced by oxidative stress in hyperlipidemic patients. Mutat Res 513, 17-25 https://doi.org/10.1016/S1383-5718(01)00285-6
- Bouchier-Hayes L and Green DR (2012) Caspase-2: the orphan caspase. Cell Death Differ 19, 51-57 https://doi.org/10.1038/cdd.2011.157
- Bouchier-Hayes L (2010) The role of caspase-2 in stress-induced apoptosis. J Cell Mol Med 14, 1212-1224 https://doi.org/10.1111/j.1582-4934.2010.01037.x
- Zhivotovsky B and Orrenius S (2005) Caspase-2 function in response to DNA damage. Biochem Biophys Res Commun 331, 859-867 https://doi.org/10.1016/j.bbrc.2005.03.191
- Pozzesi N, Fierabracci A, Liberati AM et al (2014) Role of caspase-8 in thymus function. Cell Death Differ 21, 226-233 https://doi.org/10.1038/cdd.2013.166
- Lopez KE and Bouchier-Hayes L (2022) Lethal and nonlethal functions of caspases in the DNA damage response. Cells 11, 1887
- Boege Y, Malehmir M, Healy ME et al (2017) A dual role of caspase-8 in triggering and sensing proliferation-associated DNA damage, a key determinant of liver cancer development. Cancer Cell 32, 342-359 e310
- Lim J, Kim YS, Kim SH et al (2014) Triglyceride enhances susceptibility to TNF-α-induced cell death in THP-1 cells. Genes Genom 36, 87-93 https://doi.org/10.1007/s13258-013-0144-y
- Luthi AU and Martin SJ (2007) The CASBAH: a searchable database of caspase substrates. Cell Death Differ 14, 641-650 https://doi.org/10.1038/sj.cdd.4402103
- Su JH, Nichol KE, Sitch T et al (2000) DNA damage and activated caspase-3 expression in neurons and astrocytes: evidence for apoptosis in frontotemporal dementia. Exp Neurol 163, 9-19 https://doi.org/10.1006/exnr.2000.7340
- Zhu C, Wang X, Hagberg H and Blomgren K (2000) Correlation between caspase-3 activation and three different markers of DNA damage in neonatal cerebral hypoxia-ischemia. J Neurochem 75, 819-829 https://doi.org/10.1046/j.1471-4159.2000.0750819.x
- Romeu M, Rubio L, Sanchez-Martos V et al (2016) Correction to virgin olive oil enriched with its own phenolics or complemented with thyme phenols improves DNA protection against oxidation and antioxidant enzyme activity in hyperlipidemic subjects. J Agric Food Chem 64, 5137
- Jackson SP and Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461, 1071-1078 https://doi.org/10.1038/nature08467
- Cimprich KA and Cortez D (2008) ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 9, 616-627 https://doi.org/10.1038/nrm2450
- Lassus P, Opitz-Araya X and Lazebnik Y (2002) Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297, 1352-1354 https://doi.org/10.1126/science.1074721
- Qin Y, Vanden Hoek TL, Wojcik K et al (2004) Caspase-dependent cytochrome c release and cell death in chick cardiomyocytes after simulated ischemia-reperfusion. Am J Physiol Heart Circ Physiol 286, H2280-2286 https://doi.org/10.1152/ajpheart.01063.2003
- Zhu J, Liu M, Kennedy RH and Liu SJ (2006) TNF-alpha-induced impairment of mitochondrial integrity and apoptosis mediated by caspase-8 in adult ventricular myocytes. Cytokine 34, 96-105 https://doi.org/10.1016/j.cyto.2006.04.010
- Kim BM and Hong SH (2011) Sequential caspase-2 and caspase-8 activation is essential for saikosaponin a-induced apoptosis of human colon carcinoma cell lines. Apoptosis 16, 184-197 https://doi.org/10.1007/s10495-010-0557-x
- Da J, Zhuo M and Qian M (2015) MCPIP is induced by cholesterol and participated in cholesterol-caused DNA damage in HUVEC. Int J Clin Exp Pathol 8, 10625
- de Sousa JA, Pereira P, Allgayer MDC, Marroni NP, de Barros Falcao Ferraz A and Picada JN (2017) Evaluation of DNA damage in Wistar rat tissues with hyperlipidemia induced by tyloxapol. Exp Mol Pathol 103, 51-55 https://doi.org/10.1016/j.yexmp.2017.06.009
- Natarelli L, Geissler C, Csaba G et al (2018) miR-103 promotes endothelial maladaptation by targeting lncWDR59. Nat Commun 9, 2645
- Tanaka H, Yokota H, Jover T et al (2004) Ischemic preconditioning: neuronal survival in the face of caspase-3 activation. J Neurosci 24, 2750-2759 https://doi.org/10.1523/JNEUROSCI.5475-03.2004
- Boice AG, Lopez KE, Pandita RK et al (2022) Correction: Caspase-2 regulates S-phase cell cycle events to protect from DNA damage accumulation independent of apoptosis. Oncogene 41, 3732-3734 https://doi.org/10.1038/s41388-022-02373-z
- Sidi S, Sanda T, Kennedy RD et al (2008) Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2, and caspase-3. Cell 133, 864-877 https://doi.org/10.1016/j.cell.2008.03.037
- Son SJ, Rhee KJ, Lim J, Kim TU, Kim TJ and Kim YS (2013) Triglyceride-induced macrophage cell death is triggered by caspase-1. Biol Pharm Bull 36, 108-113 https://doi.org/10.1248/bpb.b12-00571
- Lim J, Kim HK, Kim SH, Rhee KJ and Kim YS (2017) Caspase-2 mediates triglyceride (TG)-induced macrophage cell death. BMB Rep 50, 510-515 https://doi.org/10.5483/BMBRep.2017.50.10.106
- Aronis A, Madar Z and Tirosh O (2005) Mechanism underlying oxidative stress-mediated lipotoxicity: exposure of J774.2 macrophages to triacylglycerols facilitates mitochondrial reactive oxygen species production and cellular necrosis. Free Radic Biol Med 38, 1221-1230 https://doi.org/10.1016/j.freeradbiomed.2005.01.015
- Woo SH, Kim B, Kim SH, Jung BC, Lee Y and Kim YS (2022) Pulsed electromagnetic field potentiates etoposide-induced MCF-7 cell death. BMB Rep 55, 148-153 https://doi.org/10.5483/BMBRep.2022.55.3.119
- Imre G, Heering J, Takeda AN et al (2012) Caspase-2 is an initiator caspase responsible for pore-forming toxin-mediated apoptosis. EMBO J 31, 2615-2628 https://doi.org/10.1038/emboj.2012.93
- Jo HS, Kim DS, Ahn EH et al (2016) Protective effects of Tat-NQO1 against oxidative stress-induced HT-22 cell damage, and ischemic injury in animals. BMB Rep 49, 617-622 https://doi.org/10.5483/BMBRep.2016.49.11.117