DOI QR코드

DOI QR Code

Characteristics according to Manufacturing Conditions of Heat Radiation Clothing for Controlling Radiant Heat Transfer and Real Fire Performance Prediction Simulation

복사열 전이 제어가 가능한 아라미드계 방열복 제조 조건에 따른 특성 분석 및 실화재 성능 예측 시뮬레이션 연구

  • Received : 2023.02.24
  • Accepted : 2023.03.29
  • Published : 2023.04.30

Abstract

In this study, in order to manufacture a composite yarn with excellent flame retardancy and resistance to external loads, a composite yarn was prepared by mixing oxi-PAN fiber and para-aramid fiber, and then the composite yarn and FR (flame resistance) rayon fiber were used. fabrics were woven, and the optimal weaving conditions were selected by analyzing the thermal and physical characteristics according to the weaving conditions. A hot-melt type adhesive was used to adhere aluminum-coated polyethylene terephthalate (PET) to the surface of the woven fabric, and the radiant heat protection performance and heat resistance characteristics were analyzed according to the type of adhesive. Based on the physical property DB (in-put data) of the manufactured heat-dissipating fabric, heat-resistance performance prediction simulation was conducted when the heat-dissipating fabric was worn and when it was not worn. As a result of predicting the temperature change on the surface of the human body when the external heat load is 250 ℃ and the heat exposure time is 8 seconds, when wearing heat radiation clothing, the human body surface temperature is reduced by up to 8.6%. As a result of correlation analysis between the simulation result and the actual test, it was confirmed that the temperature change in the actual experiment was 38.9 ℃, which differed by 1.2% from the simulation result.

Keywords

Acknowledgement

본 연구는 산업통장지원부의 가상공학플랫폼 구축사업이 지원하는 연구과제(P0022335) 및 중소벤처기업부의 중소기업기술혁신개발사업이 지원하는 연구과제(S3104437)로 수행된 것이며, 지원에 대해 진심으로 감사드립니다.

References

  1. B. Wang, Z. Yin, W. Cheng, Y. Zhang, and Y. Hu, "Flame-retardant Aramid Fabric with Durable, Self-cleaning, Hydrophobic, and Tunable Electromagnetic Interference Shielding Properties", Compos. Part A, 2023, 166, 991-998. 
  2. L. Chen, Z. Hu, L. Xing, J. Wu, N. Zheng, L. Liu, J. He, and Y. Huang, "Processing and Characterization of Nickel-plated PBO Fiber with Improved Interfacial Properties", Fiber. Polym., 2014, 15, 271-277.  https://doi.org/10.1007/s12221-014-1160-5
  3. R. A. Elsad, K. A. Mahmoud, Y. S. Rammah, and S. Abouhaswa, "Fabrication, Structural, Optical, and Dielectric Properties of PVC-PbO Nanocomposites, as Well as Their Gamma-ray Shielding Capability", Radiat. Phys. Chem., 2021, 189, 18-35.  https://doi.org/10.1016/j.radphyschem.2021.109753
  4. K. O. Kim, J. W. Cho, M. S. Park, and J. J. Lee, "Effect of Composition of Base Fabric in Heat Protective Clothing on Physical Properties and Heat Protective Performances", Text. Sci. Eng., 2022, 59, 271-277.  https://doi.org/10.12772/TSE.2022.59.271
  5. G. M. Gonzalez, J. Ward, J. Song, K. Swana, S. A. Fossey, J. L. Palmer, F. W. Zhang, V. M. Lucian, L. Cera, J. F. Zimmerman, F. J. Burpo, and K. K. Parker, "Para-aramid Fiber Sheets for Simultaneous Mechanical and Thermal Protection in Extreme Environments", Matter, 2020, 3, 742-758.  https://doi.org/10.1016/j.matt.2020.06.001
  6. G. Silva, S. Kim, R. Aguilar, and J. Nakamatsu, "Natural Fibers as Reinforcement Additives for Geopolymers - A Review of Potential Eco-friendly Applications to the Construction Industry", Sustainable Materials and Technologies, 2020, 23, 28-37.  https://doi.org/10.1016/j.susmat.2019.e00132
  7. W. C. Liu, S. Liu, T. Liu, T. Liu, J. Zhang, and H. Liu, "Eco-Friendly Post-consumer Cotton Waste Recycling for Regenerated Cellulose Fibers", Carbohydr. Polym., 2019, 206, 141-148.  https://doi.org/10.1016/j.carbpol.2018.10.046
  8. S. Agnello, A. Alessi, G. Buscarino, and A. Piazza, "Structural and Thermal Stability of Graphene Oxide-silica Nanoparticles Nanocomposites", J. Alloys Compd., 2017, 695, 2054-2067.  https://doi.org/10.1016/j.jallcom.2016.11.044
  9. H. H. Nguyễn, J.-I. Choi, H.-K. Kim, and B. Y. Lee, "Mechanical Properties and Self-healing Capacity of Eco-friendly Ultra-high Ductile Fiber-reinforced Slag-based Composites", Compos. Struct., 2019, 229, 158-165.  https://doi.org/10.1016/j.compstruct.2019.111401
  10. Y. Liu, K. Z. Chen, S. Peng, Y. C. K. Han, M. Yu, and H. Zhang, "Synthesis and Pyrolysis Mechanism of a Novel Polymeric Precursor for SiBN Ternary Ceramic Fibers", Ceramics Int., 2019, 45, 20172-20177.  https://doi.org/10.1016/j.ceramint.2019.06.286
  11. B. S. Yilbas, A. Ibrahim, H. Ali, M. Khaled, and T. Laoui, "Hydrophobic and Optical Characteristics of Graphene and Graphene Oxide Films Transferred onto Functionalized Silica Particles Deposited Glass Surface", Appl. Surface Sci., 2018, 442, 213-223.  https://doi.org/10.1016/j.apsusc.2018.02.176
  12. K. Schonfeld and H. Klemm, "Interaction of Fiber Matrix Bonding in SiC/SiC Ceramic Matrix Composites", J. Eur. Ceram. Soc., 2019, 39, 3557-3565.  https://doi.org/10.1016/j.jeurceramsoc.2019.05.025
  13. J. K. Lee, Y. J. Bang, C. H. Bang, and J. S. Kwon, "Study on the Thermal Protective Performance Measurements of Fire Fighter's Protective Clothing for Low Level Radiant Heat Exposures", Fire Sci. Eng., 2014, 28, 1-8.  https://doi.org/10.7731/KIFSE.2014.28.2.001
  14. J. K. Lee, Y. J. Bang, C. H. Bang, and J. S. Kwon, "Study on the Thermal Protective Performance Measurements of Fire Fighter's Protective Clothing for Low Level Radiant Heat Exposures", Fire Sci. Eng., 2014, 28, 31-39.  https://doi.org/10.7731/KIFSE.2014.28.1.031
  15. S. M. Naga, H. F. El-Maghraby, M. Elgamhoudy, and M. A. Saleh, "Characterization and Origin of Failure of SiC/ZTA Composites", Int. J. Refract. Metals Hard Mater., 2018, 73, 53-57.  https://doi.org/10.1016/j.ijrmhm.2018.01.016
  16. C. Bai, J. Zheng, G. A. Rizzi, and P. Colombo, "Low-temperature Fabrication of SiC/geopolymer Cellular Composites", Compos. Part B: Eng., 2018, 137, 23-30.  https://doi.org/10.1016/j.compositesb.2017.11.013
  17. Q. Wang and C. Zhang, "Fire Safety Analysis of Building Partition Wall Engineering", Procedia Eng., 2018, 211, 747-754.  https://doi.org/10.1016/j.proeng.2017.12.071
  18. L. P. Muthusamy, A. P. Periyasamy, and N. Govindan, "Prediction of Pilling Grade of Alkali-treated Regenerated Cellulosic Fabric Using Fuzzy Inference System", J. Text. Inst., 2021, 113, 88-97.  https://doi.org/10.1080/00405000.2021.2012909
  19. R. Ma, J. Shi, W. Lin, and J. Chen, "Synthesis and Sintering of Nanocrystalline SiC Ceramic Powders", Mater. Chem. Phys., 2020, 253, 278-287.  https://doi.org/10.1016/j.matchemphys.2020.123445
  20. J. He, Y. Liu, C. Wu, S. Liu, Y. Lu, and Q. Wu, "Pre-oxidation of Cellulose Controlled by the Nitrogen-phosphorus Compound Catalyst to Prepare Fibers with Ultra-high Flame Retardancy", Ind. Crops Prod., 2023, 195, 235-243. 
  21. Y. Arafat and A. J. Uddin, "Recycled Fibers from Pre- and Post-consumer Textile Waste as Blend Constituents in Manufacturing 100% Cotton Yarns in Ring Spinning: A Sustainable and Eco-friendly Approach", Heliyon, 2022, 26, 137-145.  https://doi.org/10.1016/j.heliyon.2022.e11275
  22. J.-H. Yang, H.-S. Cho, S.-H. Park, and J.-H. Lee, "A Study on Skin Temperature Distribution of the Human Body as Fundamental Data for Developing Heat Energy Harvesting Clothing", Korean Soc. Emot. Sensib., 2011, 14, 435-444.