DOI QR코드

DOI QR Code

압력측정 전도음향측심기(PIES)를 활용한 해양관측의 현재와 전망

Present and Prospect of Ocean Observation Using Pressure-recording Inverted Echo Sounder (PIES)

  • 전찬형 (부산대학교 해양학과 및 해양연구소) ;
  • 이강녕 (인하대학교 해양과학과 ) ;
  • 송하진 (인하대학교 해양과학과 ) ;
  • 채정엽 (인하대학교 해양과학과 ) ;
  • 박재훈 (인하대학교 해양과학과 )
  • CHANHYUNG JEON (Department of Oceanography and Marine Research Institute, Pusan National University) ;
  • KANG-NYEONG LEE (Department of Ocean Sciences, Inha University) ;
  • HAJIN SONG (Department of Ocean Sciences, Inha University) ;
  • JEONG-YEOB CHAE (Department of Ocean Sciences, Inha University) ;
  • JAE-HUN PARK (Department of Ocean Sciences, Inha University)
  • 투고 : 2022.12.14
  • 심사 : 2023.01.31
  • 발행 : 2023.02.28

초록

음향은 수중에서 원거리 전파가 가능하여 수심 측량, 수중 물체 탐지, 수중 통신, 유속 측정 등 다방면에서 해양관측에 널리 사용되고 있다. 본 논문에서는 해저면 계류형태의 압력측정 전도음향측심기(Pressure-recording Inverted Echo Sounder, PIES)를 활용하여 관측 가능한 해양물리현상(해류, 중규모 소용돌이, 내부파, 해면고도변화 등)에 대해 서술한다. 이어서 PIES장비 회수 없이 음향을 활용한 원격 자료획득법, 자동 자료전송 팝업 부표(Pop-up Data Shuttle, PDS)를 활용한 최신의 원격 자동자료획득법을 소개하고, 향후 실현 가능한 (준)실시간 원격 자동자료획득법을 덧붙인다.

Sound can travel a long distance in the ocean; hence, acoustic instruments have been widely used for ocean observations in various fields such as bathymetric survey, object detection, underwater communication, and current measurements. Herein we introduce a pressure-recording inverted echo sounder (PIES) which is one of the most powerful instruments, moored at seafloor for ocean observation in physical oceanography. The PIES can measure various kinds of oceanic phenomena (currents, mesoscale eddies, internal waves, and sea surface height variabilities) and support acoustic telemetry and pop-up data shuttle (PDS) system for remote data acquisition. In this paper, we review uses of PIES and describe present and prospective system of PIES including remote data acquisition toward (quasi) real-time data recovery.

키워드

과제정보

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

참고문헌

  1. Along-track Level-2+ (L2P) SLA Product Handbook. 2017. Nomenclature: SALP-MU-P-EA-23150-CLS (September 2017).
  2. Andres, M., A. Silvano, F. Straneo and D.R. Watts, 2015. Icebergs and Sea Ice Detected with Inverted Echo Sounders. Journal of Atmospheric and Oceanic Technology, 32(5): 1042-1057. DOI: https://doi.org/10.1175/JTECH-D-14-00161.1.
  3. Andres, M., M. Wimbush, J.-H. Park, K.-I. Chang, B.-H. Lim, D.R. Watts, H. Ichikawa and W.J. Teague, 2008. Observations of Kuroshio flow variations in the East China Sea. Journal of Geophysical Research, 113(C5): C05013. DOI: https://doi.org/10.1029/2007JC004200.
  4. Book, J.W., M. Wimbush, S. Imawaki, H. Ichikawa, H. Uchida and H. Kinoshita, 2002. Kuroshio temporal and spatial variations South of Japan determined from inverted echo sounder measurements. Journal of Geophysical Research: Oceans, 107(9). DOI: https://doi.org/10.1029/2001jc000795.
  5. Donohue, K.A., D.R. Watts, K.L. Tracey, A.D. Greene and M. Kennelly, 2010. Mapping circulation in the Kuroshio Extension with an array of current and pressure recording inverted echo sounders. Journal of Atmospheric and Oceanic Technology, 27(3): 507-527. DOI: https://doi.org/10.1175/2009JTECHO686.1.
  6. Donohue, K.A., M.A. Kennelly and A. Cutting, 2016. Sea surface height variability in drake passage. Journal of Atmospheric and Oceanic Technology, 33(4): 669-683. DOI: https://doi.org/10.1175/JTECH-D-15-0249.1.
  7. Hwang, C., H.S. Min, C. Jeon, D.G. Kim and J.-H. Park, 2021. Estimation of Sea Surface Height using Pressure-recording Inverted Echo Sounders Data in the Mindanao Current Region. Ocean and Polar Research, 43(4): 219-227. DOI: https://doi.org/10.4217/OPR.2021.43.4.219.
  8. Jeon, C., J.-H. Park, D.G. Kim, E. Kim and D. Jeon, 2018. Comparison of Measurements from Pressure-recording Inverted Echo Sounders and Satellite Altimetry in the North Equatorial Current Region of the Western Pacific. Ocean Science Journal, 53(2): 207-213. DOI: https://doi.org/10.1007/s12601-018-0012-4.
  9. Jeon, C., J.-H. Park, M. Kennelly, E. Sousa, D.R. Watts, E.-J. Lee, T. Park and T. Peacock, 2021. Advanced Remote Data Acquisition Using a Pop-Up Data Shuttle (PDS) to Report Data From Current- and Pressure-Recording Inverted Echo Sounders (CPIES). Frontiers in Marine Science, 8(July): 1-9. DOI: https://doi.org/10.3389/fmars.2021.679534.
  10. Kennelly, M., K.L. Tracey and D.R. Watts, 2007. Inverted echo sounder data processing manual. GSO Tech. Rep., University of Rhode Island
  11. Na, H., D.R. Watts, J.-H. Park, C. Jeon, H.J. Lee, M. Nonaka and A.D. Greene, 2016. August. Bottom pressure variability in the Kuroshio Extension driven by the atmosphere and ocean instabilities. Journal of Geophysical Research: Oceans, 121(8): 6507-6519. DOI: https://doi.org/10.1002/2016JC012097.
  12. Na, H., J.-H. Park, D. Randolph Watts, K.A. Donohue and H.J. Lee, 2012. Near 13 day barotropic ocean response to the atmospheric forcing in the North Pacific. Journal of Geophysical Research: Oceans, 117(12): 1-12. DOI: https://doi.org/10.1029/2012JC008211.
  13. Na, H., M. Wimbush, J.-H. Park, H. Nakamura and A. Nishina, 2014. Observations of flow variability through the Kerama Gap between the East China Sea and the Northwestern Pacific. Journal of Geophysical Research: Oceans. 119(2): 689-703. DOI: https://doi.org/10.1002/2013JC008899.
  14. Nagano, A., T. Hasegawa, H. Matsumoto and K. Ariyoshi, 2018. Bottom pressure change associated with the 2004-2005 large meander of the Kuroshio south of Japan. Ocean Dynamics, 68(7): 847-865. DOI: https://doi.org/10.1007/s10236-018-1169-1.
  15. Nagano, A., Y. Yamashita, K. Ariyoshi, T. Hasegawa, H. Matsumoto and M. Shinohara, 2021. Seafloor Pressure Change Excited at the Northwest Corner of the Shikoku Basin by the Formation of the Kuroshio Large-Meander in September 2017. Frontiers in Earth Science, 8(January): 1-16. DOI: https://doi.org/10.3389/feart.2020.583481.
  16. Park, J.-H. and D.R. Watts, 2005. Response of the southwestern Japan/East Sea to atmospheric pressure. Deep-Sea Research Part II: Topical Studies in Oceanography, 52(11-13): 1671-1683. DOI: https://doi.org/10.1016/j.dsr2.2003.08.007.
  17. Park, J.-H. and D.R. Watts, 2006a. Internal Tides in the Southwestern Japan/East Sea. Journal of Physical Oceanography, 36(1): 22-34. DOI: https://doi.org/10.1175/JPO2846.1.
  18. Park, J.-H. and D.R. Watts, 2006b. Near 5-day nonisostatic response of the Atlantic Ocean to atmospheric surface pressure deduced from sub-surface and bottom pressure measurements. Geophysical Research Letters, 33(12): 1-5. DOI: https://doi.org/10.1029/2006GL026304.
  19. Park, J.-H., D.R. Watts, K.A. Donohue and K.L. Tracey, 2012. Comparisons of sea surface height variability observed by pressure-recording inverted echo sounders and satellite altimetry in the Kuroshio Extension. Journal of Oceanography, 68(3): 401-416. DOI: https://doi.org/10.1007/s10872-012-0108-x.
  20. Park, J.-H., D.R. Watts, K.A. Donohue and S.R. Jayne, 2008. A comparison of in situ bottom pressure array measurements with GRACE estimates in the Kuroshio Extension. Geophysical Research Letters, 35(17): 1-5. DOI: https://doi.org/10.1029/2008GL034778.
  21. Park, J.-H., D.R. Watts, K.L. Tracey and D.A. Mitchell, 2005. A multi-index GEM technique and its application to the southwestern Japan/East Sea. Journal of Atmospheric and Oceanic Technology, 22(8): 1282-1293. DOI: https://doi.org/10.1175/JTECH-1668.1.
  22. Park, J.-H., K.A. Donohue, D.R. Watts and L. Rainville, 2010. Distribution of deep near-inertial waves observed in the Kuroshio Extension. Journal of Oceanography, 66(5): 709-717. DOI: https://doi.org/10.1007/s10872-010-0058-0.
  23. Popeye Data Shuttle User's Manual. 2021. Graduate School of Oceanography. Narragansett, RI: University of Rhode Island.
  24. Sun, C. and D.R. Watts, 2001. A circumpolar gravest empirical mode for the Southern Ocean hydrography. Journal of Geophysical Research: Oceans, 106(C2): 2833-2855. DOI: https://doi.org/10.1029/2000jc900112.
  25. Watts, D.R., C. Sun and S. Rintoul, 2001a. A Two-Dimensional Gravest Empirical Mode Determined from Hydrographic Observations in the Subantarctic Front. Journal of Physical Oceanography, 31(8): 2186-2209. DOI: https://doi.org/10.1175/1520-0485(2001)031<2186:ATDGEM>2.0.CO;2.
  26. Watts, D.R., X. Qian and K.L. Tracey, 2001b. Mapping Abyssal Current and Pressure Fields under the Meandering Gulf Stream. Journal of Atmospheric and Oceanic Technology, 18(6): 1052-1067. DOI: https://doi.org/10.1175/1520-0426(2001)018<1052:MACAPF>2.0.CO;2.
  27. Watts, D.R., M. Wimbush, K. Tracey, W. Teague, J.-H. Park, D. Mitchell, J.-H. Yoon, M.-S. Suk and K.-I. Chang, 2006. Currents, Eddies, and a "Fish Story" in the Southwestern Japan/East Sea. Oceanography, 19(3): 64-75. DOI: https://doi.org/10.5670/oceanog.2006.44.
  28. Zhao, R., H. Nakamura, X.-H. Zhu, J.-H. Park, A. Nishina, C. Zhang, H. Na, C. Jeon, Z.-N. Zhu and H.S. Min, 2020. Tempo-spatial variations of the Ryukyu Current southeast of Miyakojima Island determined from mooring observations. Scientific Reports, 10(1): 1-10. DOI: https://doi.org/10.1038/s41598-020-63836-5.
  29. Zhao, R., X.-H. Zhu, C. Zhang and H. Zheng, 2021. The first near real-time inverted echo sounder observation in the South China Sea, 40(6): 129-130. https://doi.org/10.1007/s13131-021-1875-2
  30. Zheng, H., X.-H. Zhu, H. Nakamura, J.-H. Park, C. Jeon, R. Zhao, A. Nishina, C. Zhang, H. Na, Z.-N. Zhu and H.S. Min, 2020. Generation and propagation of 21-day bottom pressure variability driven by wind stress curl in the East China Sea. Acta Oceanologica Sinica, 39(7): 91-106. DOI: https://doi.org/10.1007/s13131-020-1603-3.
  31. Zhu, X.-H., I.S. Han, J.-H. Park, H. Ichikawa, K. Murakami, A. Kaneko and A. Ostrovskii, 2003. The Northeastward current southeast of Okinawa Island observed during November 2000 to August 2001. Geophysical Research Letters, 30(2): 3-6. DOI: https://doi.org/10.1029/2002GL015867.