DOI QR코드

DOI QR Code

Shaking Table Tests on the Seismic Damping-Isolation Unit Composed of a Spring and Vibration-Proof Rubbers for Improving a Seismic Performance in Ceiling Structures

천장 달대구조의 내진향상을 위한 스프링과 방진고무가 융합된 제진장치의 진동대 실험

  • Won, Eun-Bee (Dept. of Architectural Engineering, Kyonggi University) ;
  • Mun, Ju-Hyun (Dept. of Architectural Engineering, Kyonggi University) ;
  • Yang, Keun-Hyeok (Dept. of Architectural Engineering, Kyonggi University)
  • 원은비 (경기대 일반대학원 건축공학과) ;
  • 문주현 (경기대 스마트시티공학부 건축공학전공) ;
  • 양근혁 (경기대 스마트시티공학부 건축공학전공)
  • Received : 2022.10.25
  • Accepted : 2022.12.06
  • Published : 2023.01.30

Abstract

This study examined the dynamic properties of a seismic damping-isolation SDI unit developed to enhance the seismic capacity of suspended ceiling structures. The developed SDI unit consisted of springs, vibration-proof rubber and bolts; a prestress force was introduced to improve the damping capacity of each material. The main variables involved whether or not the bolt introduced prestress force and included the number of layers of vibration-proof rubber. As a result of a shaking table test, the response acceleration, relative displacement, and amplification coefficients of SDI unit decreased 55.68%, 49.26%, and 56.89%, respectively compared to general hangar bolts, while the damping ratio increased by about 1.47 times. Based on these experimental results, for the SDI unit, the magnitude of the prestress force of 0.1 in the bolt and the vibration-proof rubber laminated in two are recommended.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 국토교통기술촉진연구사업의 연구비 지원으로 수행되었음. 과제번호: 22CTAP-C164373-02

References

  1. ACI 318 (2019). Building code requirements for structural concrete (ACI 318-19) and commentary. American Concrete Institute (ACI), Farmington Hills, Michigan, USA.
  2. ASCE 7 (2017). Minimum design loads for buildings and other structures. American Society of Civil Engineers, Virginia, USA.
  3. Eurocode 8 (2004). Design of structures for earthquake resistance (EN 1998-1). BSI; London.
  4. FEMA 356 (2000). Prestandard and commentary for the seismic rehabilitation of buildings. Federal emergency management agency, Washington, DC, USA.
  5. Hidayat, B. A., Hu, H. T., Hsiao, F. P., Han, A. L., Pita, P., & Haryanto, Y. (2020). Seismic performance of non-ductile detailing rc frames: An experimental investigation. Earthquakes and Structures, 19(6), 485-498. https://doi.org/10.12989/EAS.2020.19.6.485
  6. Hiram, B. A., Whittaker, A. S., Reinhorn, A. M., & Cimellaro, G. P. (2006). Seismic fragility of suspended ceiling systems. Technical Report MCEER-06-0001, University at Buffalo, State University of New York, Buffalo, New York.
  7. ICC-ES (2010). AC156 acceptance criteria for the seismic qualification of nonstructural components. International Code Council Evaluation Service, Brea, California, USA.
  8. Jun, S. C., Lee, C. H., & Bae, S. J. (2021). Full-scale shaking table test and snalysis of seismic ceiling systems. Journal of Korean Society of Steel Construction, 33(2), 63-74. https://doi.org/10.7781/kjoss.2021.33.2.063
  9. KDS 41 17 00 (2019). Seismic building design code and commentary (Korean Building Code). Korean Design Standard, Sejong-si, Korea.
  10. Kim, D. K. (2021). Dynamics of structures. 5rd ed., Goomibook, 91.
  11. Kim, H. Y., Choi, Y. S., Sim, J. I., & Cho, C. G. (2018). Full-scale shaking table test and analysis of seismic ceiling systems. Journal of Korean Association for Spatial Structures, 18(1), 135-143. https://doi.org/10.9712/KASS.2018.18.1.135
  12. Kwon, O. S. (2009). Eqmaker-artificial earthquake maker. Korea Martial Institute, Gyeonggi-do, Republic of Korea.
  13. Lee, J. S., Jung, D. I., Lee, D. Y., & Cho, B. H. (2020). Performance evaluation of perimeter reinforced t-bar type suspended ceiling with steel-panel using shaking table test. Journal of the Architectural Institute of Korea, 36(10), 167-175. https://doi.org/10.5659/JAIK.2020.36.10.167
  14. Lee, S. H., & Baek, E. R. (2020). Shake table test and seismic response analysis of gypsum panel light-weight steel ceiling system. Journal of the Architectural Institute of Korea, 22(3), 71-79.
  15. Luo, Z., Xue, J., Zhou, T., Qi, L., & Xiangbi, Z. (2021). Shaking table tests and aeismic design suggestions for innovative suspended ceiling systems with detachable metal panels. Engineering Structures, 232, 1-15.
  16. MOE (2019). Seismic Performance Evaluation and Retrofit Manual for School Facilities. Ministry of Education, Sejong-si, Korea.
  17. Naeem, A., & Kim, J. (2021). Seismic retrofit of 3000 kVA power transformer using friction dampers and prestressed tendons. Structures, 32, 641-650. https://doi.org/10.1016/j.istruc.2021.03.029
  18. Pan, X., Zheng, Z., & Wang, Z. (2016). Amplification factors for design of nonstructural components considering the near-fault pulse-like ground motions. Bulletin of Earthquake Engineering, 15(4), 1519-1541. https://doi.org/10.1007/s10518-016-0031-4
  19. Wu, Z. Y., Meng, N., Yuan, X., & Xiang, J. R. (2020). Anti-seismic suspended ceiling with stone curtain wall and mounting method thereof. China Patent No.CN112324040A.
  20. Yamasato, K., Morohoshi, M., & Harayama, H. (2019). Aseismatic ceiling structure. Japan Patent No. JP2020165110A