DOI QR코드

DOI QR Code

Static Model-Based Data Expansion and Update of Parameter Matrix

정적모델기반의 데이터 확장 및 파라미터행렬의 갱신

  • Song, Jun-Hyeok (Dept. of Architectural Engineering, Kangwon National University) ;
  • Eun, Hee-Chang (Dept. of Architectural Engineering, Kangwon National University)
  • Received : 2022.10.11
  • Accepted : 2022.12.01
  • Published : 2023.01.30

Abstract

The purpose of this study is to present a method of updating the model-based stiffness matrix using the measured data in static system and expanding to the displacements at all degrees of freedom. Using the measured data set as a constraint, the mathematical form of the updated stiffness matrix is derived using the least squares method to minimize the difference between the analytical and actual stiffness matrices. The expanded displacement responses include the rotation responses. The validity of the proposed method is illustrated in two numerical examples to update the stiffness matrix and expand the displacements of a cantilevered beam and a truss structure.

Keywords

Acknowledgement

이 연구는 2020년도 한국연구재단 연구비 지원에 의한 결과의 일부임. 과제번호:NRF-2020R1F1A1069328

References

  1. Bartilson, D.T., Jang, J., & Smyth, A.W. (2020). Sensitivity-based singular value decomposition parameterization and optimal regularization in finite element model updating, Structural Control Health Monitoring, 27(6), doi:10.1002/stc.2539.
  2. Berman, J., & Nagy, E.J. (1983). Improvement of a large analytical model using test data. AIAA Journal, 21, 1168- 1173. https://doi.org/10.2514/3.60140
  3. Bregant, L., & Sanderson, M. (2000). Rotational degrees of freedom: A historical overview on techniques and methods, Proceeding ISMA-25, 973-980.
  4. Chen, H., Huang, B., Tee, K.F., & Lu, B. (2021). A new stochastic model updating method based on improved cross-model cross-mode technique, Sensors, 21(9), doi:10.3390/s21093290.
  5. Duarte, M.L.M., & Ewins, D.J. (2000). Rotational degrees of freedom for structural coupling analysis via finite-difference technique with residual compensation, Mechanical Systems and Signal Processing, 14(2), 205-227. https://doi.org/10.1006/mssp.1999.1241
  6. Eun, H.-C., Lee, M.-S., Chung, C.-Y., & Kwak, N.-H. (2008). Expansion of measured static and dynamic data as basic information for damage detection, Architectural Research, 10(2), 21-26.
  7. Gialamas, T., Tsahalis, D., Bregant, L., & Dtte, D. (1996). Substructuring by means of FRFs: some investigations on the significance of rotational DOFs, Proceeding 14th IMAC, 612-625.
  8. Gibbons, T.J., Ozturk, E., & Sims, N.D. (2018). Rotational degree-of-freedom synthesis: An optimsed finite difference method for non-exact data, Journal of Sound and Vibration, 412(6), 207-221. https://doi.org/10.1016/j.jsv.2017.09.031
  9. Katebi, L., Tehranizadeh, M., & Mohammadgholibeyki, N. (2018). A generalized flexibility matrix-based model updating method for damage detection of plane truss and frame structures, Journal of Civil Structural Health Monitoring, 8, 301-314. https://doi.org/10.1007/s13349-018-0276-5
  10. Lee, E.-T., & Eun, H.-C. (2018). Damage identification by the data expansion and substructuring method, Advances in Civil Engineering, doi: 10.1155/2018/1867562.
  11. Lee, E.-T., & Eun, H.-C. (2019). Update of parameter matrices of the dynamic system using the least-squares approach, Advances in Mechanical Engineering, 11(11), 1-12. https://doi.org/10.1177/1687814019890806
  12. Ratcliffe, M.J., & Lieven, N.A.J. (1997). Measuring rotational degrees of freedom using a laser doppler vibrometer, Transaction of ASME, Journal of Vibration and Acoustics, 122(1), 12-20. https://doi.org/10.1115/1.568432
  13. Sestieri, A., D'Ambrogio, W., Brincker, R., Skafte, A., & Culla, A. (2013). Estimation of rotational degrees of freedom by EMA and FEM mode shapes, Special Topics in Structural Dynamics, 6.