DOI QR코드

DOI QR Code

In vitro embryo production from ewes at different physiological stages

  • Received : 2022.06.23
  • Accepted : 2022.09.01
  • Published : 2023.01.31

Abstract

Background: The collection of ovaries from slaughterhouses is an important source of oocytes for in vitro embryo production. On the other hand, the physiological stage of slaughtered females varies and influences embryo production. Objectives: The study examined the in vitro efficiency of embryos and demi-embryos from young, non-pregnant adult, and pregnant adult ewes from a local slaughterhouse. Methods: One thousand three hundred ovaries were collected from August to October 2020. The recovered oocytes were matured, fertilized, and cultured at 5% CO2, 38.5℃, and 100% humidity. Embryo bisection was performed in 96 blastocysts (n = 32 per treatment). The demiembryo pairs were incubated for their reconstitution for 12 h. SAS was used for data analysis. Results: The number of oocytes collected from the experimental group of non-pregnant adult ewes was higher (p ≤ 0.007) than those collected from the group of pregnant adult ewes (2.67 ± 0.19 vs. 2.18 ± 0.15 oocytes/group, respectively). The blastocyst rate was higher (p ≤ 0.0001) in the non-pregnant adult group (36.39%) than in the young (17.96%). The ratio of demi-embryos that recovered the blastocoelic cavity was higher (p < 0.05) in the young group (81.25%) than in the pregnant adult group (59.38%). The diameter of the demi-embryos was higher (p < 0.05) in the non-pregnant adult group (186.54 ± 8.70 ㎛) than those in the young and pregnant adult groups. Conclusions: In conclusion, the in vitro embryo production efficiency was highest when using oocytes from non-pregnant adult ewes under the conditions of this study.

Keywords

Acknowledgement

The authors thank the Animal Reproduction Laboratory of Universidad Autonoma Chapingo, as well as the Consejo Nacional de Ciencia y Tecnologia (CONACYT) for their support for the present study.

References

  1. Godke RA, Sansinena M, Youngs CR. Assisted reproductive technologies and embryo culture methods for farm animals. In: Pinkert CA, editor. Transgenic Animal Technology: A Laboratory Handbook. 3rd ed. Amsterdam: Elsevier; 2014, 581-638.
  2. Hashiyada Y. The contribution of efficient production of monozygotic twins to beef cattle breeding. J Reprod Dev. 2017;63(6):527-538.  https://doi.org/10.1262/jrd.2017-096
  3. Dadashpour Davachi N, Zare Shahneh A, Kohram H, Zhandi M, Dashti S, Shamsi H, et al. In vitro ovine embryo production: the study of seasonal and oocyte recovery method effects. Iran Red Crescent Med J. 2014;16(9):e20749. 
  4. Wani NA, Wani GM, Khan MZ, Salahudin S. Effect of oocyte harvesting techniques on in vitro maturation and in vitro fertilization in sheep. Small Rumin Res. 2000;36(1):63-67.  https://doi.org/10.1016/S0921-4488(99)00097-8
  5. Leoni GG, Palmerini MG, Satta V, Succu S, Pasciu V, Zinellu A, et al. Differences in the kinetic of the first meiotic division and in active mitochondrial distribution between prepubertal and adult oocytes mirror differences in their developmental competence in a sheep model. PLoS One. 2015;10(4):e0124911. 
  6. Contreras-Solis I, Catala M, Soto-Heras S, Roura M, Paramio MT, Izquierdo D. Effect of follicle size on hormonal status of follicular fluid, oocyte ATP content, and in vitro embryo production in prepubertal sheep. Domest Anim Endocrinol. 2021;75:106582. 
  7. Cocero MJ, Alabart JL, Hammami S, Marti JI, Lahoz B, Sanchez P, et al. The efficiency of in vitro ovine embryo production using an undefined or a defined maturation medium is determined by the source of the oocyte. Reprod Domest Anim. 2011;46(3):463-470.  https://doi.org/10.1111/j.1439-0531.2010.01690.x
  8. Hajarian H, Shahsavari MH, Karami-shabankareh H, Dashtizad M. The presence of corpus luteum may have a negative impact on in vitro developmental competency of bovine oocytes. Reprod Biol. 2016;16(1):47-52.  https://doi.org/10.1016/j.repbio.2015.12.007
  9. Trebichalska Z, Kyjovska D, Kloudova S, Otevrel P, Hampl A, Holubcova Z. Cytoplasmic maturation in human oocytes: an ultrastructural study. Biol Reprod. 2021;104(1):106-116.  https://doi.org/10.1093/biolre/ioaa174
  10. Armstrong DT. Effects of maternal age on oocyte developmental competence. Theriogenology. 2001;55(6):1303-1322. https://doi.org/10.1016/S0093-691X(01)00484-8
  11. Morton KM. Developmental capabilities of embryos produced in vitro from prepubertal lamb oocytes. Reprod Domest Anim. 2008;43 Suppl 2:137-143.  https://doi.org/10.1111/j.1439-0531.2008.01153.x
  12. Tian H, Liu K, Zhang Y, Qi Q, Wang C, Guan H, et al. Adult follicular fluid supplementation during in vitro maturation improves the developmental competence of prepubertal lamb oocytes. Theriogenology. 2019;130:157-162.  https://doi.org/10.1016/j.theriogenology.2019.03.009
  13. van der Reest J, Nardini Cecchino G, Haigis MC, Kordowitzki P. Mitochondria: Their relevance during oocyte ageing. Ageing Res Rev. 2021;70:101378. 
  14. Warzych E, Pawlak P, Pszczola M, Cieslak A, Lechniak D. Prepubertal heifers versus cows-The differences in the follicular environment. Theriogenology. 2017;87:36-47.  https://doi.org/10.1016/j.theriogenology.2016.08.007
  15. Pongsuthirak P, Vutyavanich T. Developmental competence of in vitro-matured human oocytes obtained from pregnant and non-pregnant women. Clin Exp Reprod Med. 2018;45(4):189-194.  https://doi.org/10.5653/cerm.2018.45.4.189
  16. Aller JF, Mucci NC, Kaiser GG, Callejas SS, Alberio RH. Effect of repeated eCG treatments and ovum pickup on ovarian response and oocyte recovery during early pregnancy in suckling beef cows. Anim Reprod Sci. 2012;133(1-2):10-15.  https://doi.org/10.1016/j.anireprosci.2012.06.001
  17. Fernandez-Figueroa JA. Costos de oportunidad de vacas gestantes sacrificadas en un rastro de Veracruz, Mexico. Agro Productividad. 2015;8(6):21-24.
  18. NOM-033-ZOO-1995. Sacrificio humanitario de los animales domesticos y silvestres [Mexican official norm: humanitarian slaughter of domestic and wild animals]. Mexico: SAGARPA; 1996.
  19. Crocomo LF, Ariu F, Bogliolo L, Bebbere D, Ledda S, Bicudo SD. In vitro developmental competence of adult sheep oocytes treated with roscovitine. Reprod Domest Anim. 2016;51(2):276-281.  https://doi.org/10.1111/rda.12677
  20. Davachi ND, Kohram H, Zainoaldini S. Cumulus cell layers as a critical factor in meiotic competence and cumulus expansion of ovine oocytes. Small Rumin Res. 2012;102(1):37-42.  https://doi.org/10.1016/j.smallrumres.2011.09.007
  21. Wani AR, Khan MZ, Sofi KA, Lone FA, Malik AA, Bhat FA. Effect of cysteamine and epidermal growth factor (EGF) supplementation in maturation medium on in vitro maturation, fertilization and culturing of embryos in sheep. Small Rumin Res. 2012;106(2-3):160-164.  https://doi.org/10.1016/j.smallrumres.2012.02.015
  22. Paramio MT, Izquierdo D. Recent advances in in vitro embryo production in small ruminants. Theriogenology. 2016;86(1):152-159.  https://doi.org/10.1016/j.theriogenology.2016.04.027
  23. Romao R, Marques CC, Baptista MC, Vasques MI, Barbas JP, Horta AE, et al. Evaluation of two methods of in vitro production of ovine embryos using fresh or cryopreserved semen. Small Rumin Res. 2013;110(1):36-41.  https://doi.org/10.1016/j.smallrumres.2012.07.029
  24. Younglai EV, Holt D, Brown P, Jurisicova A, Casper RF. Sperm swim-up techniques and DNA fragmentation. Hum Reprod. 2001;16(9):1950-1953.  https://doi.org/10.1093/humrep/16.9.1950
  25. Ushijima H, Akiyama K, Tajima T. Classification of morphological changes based on the number of cleavage divisions in bovine embryos. J Reprod Dev. 2009;55(1):83-87.  https://doi.org/10.1262/jrd.20075
  26. Mori M, Otoi T, Suzuki T. Correlation between the cell number and diameter in bovine embryos produced in vitro. Reprod Domest Anim. 2002;37(3):181-184.  https://doi.org/10.1046/j.1439-0531.2002.00354.x
  27. Gbur EE, Stroup WW, McCarter KS, Durham S, Young LJ, Christman M, et al. Analysis of Generalized Linear Mixed Models in the Agricultural and Natural Resources Sciences. Madison: ASA, CSSA, and SSSA; 2012.
  28. SAS. SAS User's Guide: Statistics (Version 9.1.3). Cary: SAS Inst. Inc.; 2012.
  29. Davachi ND, Zeinoaldini S, Kohram H. A novel ovine oocyte recovery method from slaughterhouse material. Small Rumin Res. 2012;106(2-3):168-172.  https://doi.org/10.1016/j.smallrumres.2012.02.005
  30. al-Gubory KH, Abdennebi L. Evidence that the conceptus contributes to the inhibition of follicular growth in the ewe. Anim Reprod Sci. 1996;45(1-2):71-80. https://doi.org/10.1016/S0378-4320(96)01578-3
  31. Leoni GG, Rosati I, Succu S, Bogliolo L, Bebbere D, Berlinguer F, et al. A low oxygen atmosphere during IVF accelerates the kinetic of formation of in vitro produced ovine blastocysts. Reprod Domest Anim. 2007;42(3):299-304.  https://doi.org/10.1111/j.1439-0531.2006.00783.x
  32. Leoni GG, Bebbere D, Succu S, Berlinguer F, Mossa F, Galioto M, et al. Relations between relative mRNA abundance and developmental competence of ovine oocytes. Mol Reprod Dev. 2007;74(2):249-257.  https://doi.org/10.1002/mrd.20442
  33. Modina S, Leoni GG, Lodde V, Naitana S, Pirani S, Succu S, et al. Involvement of E-cadherin in early in vitro development of adult and juvenile sheep embryos. Reprod Fertil Dev. 2010;22(2):468-477.  https://doi.org/10.1071/RD09125
  34. Palmerini MG, Nottola SA, Leoni GG, Succu S, Borshi X, Berlinguer F, et al. In vitro maturation is slowed in prepubertal lamb oocytes: ultrastructural evidences. Reprod Biol Endocrinol. 2014;12(1):115. 
  35. Bartlewski PM, Beard AP, Rawlings NC. Ultrasonographic study of the effects of the corpus luteum on antral follicular development in unilaterally ovulating western white-faced ewes. Anim Reprod Sci. 2001;65(3-4):231-244.  https://doi.org/10.1016/S0378-4320(00)00229-3
  36. Cerri RL, Chebel RC, Rivera F, Narciso CD, Oliveira RA, Amstalden M, et al. Concentration of progesterone during the development of the ovulatory follicle: II. Ovarian and uterine responses. J Dairy Sci. 2011;94(7):3352-3365.  https://doi.org/10.3168/jds.2010-3735
  37. Reichelt B, Niemann H. Generation of identical twin piglets following bisection of embryos at the morula and blastocyst stage. J Reprod Fertil. 1994;100(1):163-172.  https://doi.org/10.1530/jrf.0.1000163
  38. Zhao SJ, Zhao XM, Du WH, Hao HS, Liu Y, Qin T, et al. Production of early monozygotic twin bovine embryos in vitro by the blastomere separation and coculture technique. J Integr Agric. 2015;14(10):2034-2041.  https://doi.org/10.1016/s2095-3119(14)60970-9
  39. Noli L, Ogilvie C, Khalaf Y, Ilic D. Potential of human twin embryos generated by embryo splitting in assisted reproduction and research. Hum Reprod Update. 2017;23(2):156-165.  https://doi.org/10.1093/humupd/dmw041
  40. Goff AK. Embryonic signals and survival. Reprod Domest Anim. 2002;37(3):133-139. https://doi.org/10.1046/j.1439-0531.2002.00344.x