DOI QR코드

DOI QR Code

6.78 MHz loosely coupled inductive wireless power transfer with series-parallel resonators

  • Vinit Kumar (School of Electronic and Electrical Engineering, Daegu University) ;
  • KangHyun Yi (School of Electronic and Electrical Engineering, Daegu University)
  • Received : 2022.03.06
  • Accepted : 2022.10.23
  • Published : 2023.02.20

Abstract

In a recent trend, near distance wireless power transfer (WPT) for low-power applications has increased exponentially. However, issues such as high harmonic content at the input side of the transmission coil and very low WPT efficiency are persistent. Therefore, a new magnetic resonance WPT (MRWPT) system has been proposed to overcome the aforementioned issues. This paper introduces an LC compensated half-bridge class-D inverter, which minimizes the harmonic content from the input source and makes the MOSFET of the inverter perform zero voltage switching. Simultaneously, a matching capacitor is connected between the resonant coil and the compensated inverter to suppress the reactive power loss. In addition, a series-parallel (SP) structured resonance coil has been introduced for low-power applications due to its high-efficiency WPT capability in near and mid-range distances. The introduced structure acts as a current source-transmitting resonator and a voltage source receiving resonator, which ensures the guaranteed resonance regardless of load variations. The performance of the proposed MRWPT system is analyzed using two-port scattering or S-parameter in the high-frequency structure simulation (HFSS) of ANSYS software. To validate the performance of the simulated system, an experimental 7 W setup has been designed to charge a mobile device.

Keywords

Acknowledgement

This research was supported by the Daegu University Research Grant, 2020. Daegu University Research Grant, 2020.

References

  1. Brown, W.C.: The history of power transmission by radio waves. IEEE Trans. Microw. Theory Tech. 32(9), 1230-1242 (1984) https://doi.org/10.1109/TMTT.1984.1132833
  2. Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J.D., Fisher, P., Soljacic, M.: Wireless power transfer via strongly coupled magnetic resonances. Science 317(5834), 83-86 (2007) https://doi.org/10.1126/science.1143254
  3. Feng, H., Tavakoli, R., Onar, O.C., Pantic, Z.: Advances in high-power wireless charging systems: overview and design considerations. IEEE Trans Trans Electrificat 6(3), 886-919 (2020) https://doi.org/10.1109/TTE.2020.3012543
  4. Kobayashi, K., Pontefract, T., Kamiya, Y., Daisho, Y.: Development and performance evaluation of a noncontact rapid charging inductive power supply system for electric micro-bus. IEEE Vehicle Power Propul Conf. 2011, 1-6 (2011)
  5. Hui, S.Y.R., Zhong, W., Lee, C.K.: A critical review of recent progress in midrange wireless power transfer. IEEE Trans Power Electron. 29(9), 4500-4511 (2014)
  6. Chen, L., Liu, S., Zhou, Y.C., Cui, T.J.: An optimizable circuit structure for high-efficiency wireless power transfer. IEEE Trans Indust Electron. 60(1), 339-349 (2013) https://doi.org/10.1109/TIE.2011.2179275
  7. Pham, T.S., Nguyen, T.D., Tung, B.S., et al.: Optimal frequency for magnetic resonant wireless power transfer in conducting medium. Sci Reports. 11, 18690 (2021)
  8. Shevchenko, V., Husev, O., Strzelecki, R., Pakhaliuk, B., Poliakov, N., Strzelecka, N.: Compensation topologies in IPT systems: Standards, requirements, classification, analysis, comparison and application. IEEE Access 7, 120559-120580 (2019) https://doi.org/10.1109/access.2019.2937891
  9. Zhang, W., Mi, C.C.: Compensation topologies of high-power wireless power transfer systems. IEEE Trans Vehicul Technol. 65(6), 4768-4778 (2016) https://doi.org/10.1109/TVT.2015.2454292
  10. Sallan, J., Villa, J.L., Llombart, A., Sanz, J.F.: Optimal design of ICPT systems applied to electric vehicle battery charge. IEEE Trans Indust Electron. 56(6), 2140-2149 (2009) https://doi.org/10.1109/TIE.2009.2015359
  11. Feng, J., Li, Q., Lee, F.C., Minfan, Fu.: LCCL-LC resonant converter and its soft switching realization for omnidirectional wireless power transfer systems. IEEE Trans. Power Electron. 36(4), 3828-3839 (2021) https://doi.org/10.1109/TPEL.2020.3024757
  12. Geng, Y., Li, B., Yang, Z., Lin, F., Sun, Hu.: A high efficiency charging strategy for a supercapacitor using a wireless power transfer system based on inductor/ capacitor/capacitor (LCC) compensation topology. Energies 10, 1
  13. Jeong, C.H., Choi, S.J.: Graphical design plane analysis for series-compensated resonant energy links of inductive wireless power transfer systems. J Power Electron. 19(6), 1440-1448 (2019) https://doi.org/10.6113/jpe.2019.19.6.1440
  14. Liu, Xu., Clare, L., Yuan, X., Wang, C., Liu, J.: A design method for making an LCC compensation two-coil wireless power transfer system more energy efficient than an SS counterpart. Energies 10, 9
  15. Shin, H., Chung, E., Ha, J.-I.: Cost-effective high-performance digital control method in series-series compensated wireless power transfer system. Electronics 9, 11 (2020)
  16. Truong, C.-T., Choi, S.-J.: Investigation of scale conversion for inductive power transfer in series-series configuration. Electronics 9, 11 (2020)
  17. Yang, Y., Cui, J., Cui, X.: Design and analysis of magnetic coils for optimizing the coupling coefficient in an electric vehicle wireless power transfer system. Energies 13, 16 (2020) https://doi.org/10.3390/en13153850
  18. Zhang, Y., Yan, Z., Kan, T., Zeng, X., Chen, S., Mi, C.C.: Modeling and analysis of a strongly coupled series-parallel compensated wireless power transfer system. IEEE J Emerg Select Top Power Electron. 7(2), 1364-1370 (2019) https://doi.org/10.1109/JESTPE.2018.2860935
  19. Czarkowski D, Kazimierczuk MK. 2011 Resonant Power Converters. Wiley IEEE Press. 2 edition
  20. Rivas, J.M., Han, Y., Leitermann, O., Sagneri, A.D., Perreault, D.J.: A high-frequency resonant inverter topology with low-voltage stress. IEEE Trans. Power Electron. 23(4), 1759-1771 (2008) https://doi.org/10.1109/TPEL.2008.924616
  21. RJ Calder, SH Lee, RD Lorenz. 2013 Efficient, mhz frequency, resonant converter for sub-meter (30 cm) distance wireless power transfer. In: 2013 IEEE Energy Conversion Congress and Exposition. 1917-1924
  22. MK Uddin, G Ramasamy, S Mekhilef, K Ramar, YC Lau. 2014 A review on high frequency resonant inverter technologies for wireless power transfer using magnetic resonance coupling. In: IEEE Conference on Energy Conversion (CENCON). 412-417
  23. Kaczmarczyk, Z.: High-efciency class E, EF2, and E/F3 inverters. IEEE Trans. Industr. Electron. 53(5), 1584-1593 (2006) https://doi.org/10.1109/TIE.2006.882011
  24. Jiang, C., Chau, K.T., Liu, C., ChristopherLee, H.T.: An overview of resonant circuits for wireless power transfer. Energies 10(7), 894
  25. Li, S., Li, W., Deng, J., Nguyen, T.D., Mi, C.C.: A doublesided LCC compensation network and its tuning method for wireless power transfer. IEEE Trans Vehicul Technol. 64(6), 2261-2273 (2015) https://doi.org/10.1109/TVT.2014.2347006
  26. LC Filter Design, An Application Report by Texas Instruments. (2016)
  27. Yi, K.H.: 6.78 MHz capacitive coupling wireless power transfer system. J Power Electron 15(4), 987-993 (2015) https://doi.org/10.6113/JPE.2015.15.4.987
  28. Zhang, Y., Yan, Z., Liang, Z., Li, S., Mi, C.C.: A high-power wireless charging system using LCL-N topology to achieve a compact and low-cost receiver. IEEE Trans Power Electron 35(1), 131-137 (2020) https://doi.org/10.1109/tpel.2019.2914363
  29. Zhang, W., Mi, C.C.: Compensation topologies of high-power wireless power transfer systems. IEEE Trans. Veh. Technol. 65(6), 4768-4778 (2016) https://doi.org/10.1109/TVT.2015.2454292
  30. Moradewicz, A.J., Kazmierkowski, M.P.: Contactless energy transfer system with FPGA-controlled resonant converter. IEEE Trans. Industr. Electron. 57(9), 3181-3190 (2010) https://doi.org/10.1109/TIE.2010.2051395
  31. Wang, C.S., Stielau, O.H., Covic, G.A.: Design considerations for a contactless electric vehicle battery charger. IEEE Trans Indust Electron 52(5), 1308-1314 (2005) https://doi.org/10.1109/TIE.2005.855672
  32. Moon, J., Hwang, H., Jo, B., Kwon, C.K., Kim, T.G., Kim, S.W.: Design and implementation of a high efficiency 6.78 MHz resonant wireless power transfer system with a 5 W fully integrated power receiver. IET Power Electron 10(5), 557-587 (2017)  https://doi.org/10.1049/iet-pel.2016.0107