DOI QR코드

DOI QR Code

Parameter identification and SOC estimation of lithium-ion batteries based on AGCOA-ASRCKF

  • Yunkun Chu (School of Electrical Engineering, Nantong University) ;
  • Junhong Li (School of Electrical Engineering, Nantong University) ;
  • Juping Gu (School of Electrical Engineering, Nantong University) ;
  • Yujian Qiang (School of Electrical Engineering, Nantong University)
  • Received : 2022.06.08
  • Accepted : 2022.09.13
  • Published : 2023.02.20

Abstract

The state of charge (SOC) is an important parameter in battery management systems (BMS), and its accuracy is very important. In this paper, a co-estimation with the adaptive global optimal guided coyote optimization algorithm and the adaptive square root cubature Kalman filter (AGCOA-ASRCKF) is used to perform the parameter identification and SOC estimation of a lithium-ion second-order RC model. The AGCOA effectively solves the problems where traditional heuristic algorithms tend to fall into local optimum and have a slow convergence speed. The AGCOA can accurately identify the parameters of the battery model. At the same time, when compared with the cubature Kalman filter, the ASRCKF introduces a square root filter and adds a residual sequence to adaptively update the covariance of the process noise and measurement noise, which improves the estimation accuracy of the SOC. The method proposed in this paper is verified by intermittent constant current test, dynamic stress test, and the federal urban driving schedule. Simulation results show that a high-precision battery model can be established by AGCOA-ASRCKF. In addition, the predicted value of the terminal voltage is basically consistent with the actual value. At the same time, the SOC estimation error can be controlled to within 1.5%, and the algorithm has good robustness and reliability in the presence of errors in the initial SOC.

Keywords

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China (61973176, 61973178, U2066203), the Six Talent Peaks Project in Jiangsu Province (XYDXX038), the Key R&D Program Project in Jiangsu Province (BE2021063).

References

  1. Zhang, S., Oclon, P., Klemes, J.-J., Michorczyk, P., Pielichowska, K., Pielichowski, K.: Renewable energy systems for building heating, cooling and electricity production with thermal energy storage. Renew. Sust. Energ. Rev. 165, 112560
  2. Mohammadi, F.: Lithium-ion battery State-of-Charge estimation based on an improved Coulomb-Counting algorithm and uncertainty evaluation. J. Energy Storage 48, 104061
  3. Xie, K., Han, L.-Q., Ma, K., Wang, F., Wang, B., Chen, J.-C., Gao, Y.: A method for measuring and evaluating the fault response performance of battery management system. Energy Rep. 8, 639-649 (2022) https://doi.org/10.1016/j.egyr.2022.01.223
  4. Peters, J.-F., Baumann, M., Zimmermann, B., Braun, J., Weil, M.: The environmental impact of Li-Ion batteries and the role of key parameters-A review. Renew. Sust. Energ. Rev. 67, 491-506 (2017) https://doi.org/10.1016/j.rser.2016.08.039
  5. Hannan, M.-A., Hoque, M.-M., Mohamed, A., Ayob, A.: Review of energy storage systems for electric vehicle applications: Issues and challenges. Renew. Sust. Energ. Rev. 69, 771-789 (2017) https://doi.org/10.1016/j.rser.2016.11.171
  6. Yang, B., Wang, J.-T., Cao, P.-L., Zhu, T.-J., Shu, H.-C., Chen, J., Zhang, J., Zhu, J.-W.: Classification, summarization and perspectives on state-of-charge estimation of lithium-ion batteries used in electric vehicles: A critical comprehensive survey, Classification, summarization and perspectives on state-of-charge estimation of lithium-ion batteries used in electric vehicles: A critical comprehensive survey. J. Energy Storage 39, 102572 (2021)
  7. Zhu, J.-G., Sun, Z.-C., Wei, X.-Z., Dai, H.-F., Gu, W.-J.: Experimental investigations of an AC pulse heating method for vehicular high power lithium-ion batteries at subzero temperatures. J. Power Sources 367, 145-157 (2017) https://doi.org/10.1016/j.jpowsour.2017.09.063
  8. He, J.-T., Feng, D.-W., Hu, C., Wei, Z.-B., Yan, F.-J.: Two-layer online state-of-charge estimation of lithium-ion battery with current sensor bias correction. Int. J. Energy. Res. 43, 3837-3852 (2019) https://doi.org/10.1002/er.4557
  9. Wang, Z.-L., Zhen, D., Gu, F.-S., Ball, A.: A review on online state of charge and state of health estimation for lithium-ion batteries in electric vehicles. Energy Rep. 7, 5141-5161 (2021) https://doi.org/10.1016/j.egyr.2021.08.113
  10. Geng, Y., Pang, H., Liu, X.: State-of-charge estimation for lithium-ion battery based on PNGV model and particle filter algorithm. J. Power Electron. (2022). https://doi.org/10.1007/s43236-022-00422-0
  11. Ren, P., Wang, S., He, M.: Novel strategy based on improved Kalman filter algorithm for state of health evaluation of hybrid electric vehicles Li-ion batteries during short- and longer term operating conditions. J. Power Electron. 21, 1190-1199 (2021) https://doi.org/10.1007/s43236-021-00253-5
  12. Chen, Z.-W., Yang, L.-W., Zhao, X.-B., Wang, Y.-R., He, Z.-J.: Online state of charge estimation of Li-ion battery based on an improved unscented Kalman filter approach. Appl. Math. Model 70, 532-544 (2019) https://doi.org/10.1016/j.apm.2019.01.031
  13. Xu, W., Xu, J.-L., Yan, X.-F.: Lithium-ion battery state of charge and parameters joint estimation using cubature Kalman filter and particle filter. J. Power Electron. 20, 292-307 (2020) https://doi.org/10.1007/s43236-019-00023-4
  14. Burgos, C., Saez, D., Orchard, M.-E., Cardenas, R.: Fuzzy modelling for the state of charge estimation of lead-acid batteries. J. Power Sources 274, 355-366 (2015) https://doi.org/10.1016/j.jpowsour.2014.10.036
  15. Liu, D.T., Li, L., Song, Y.C., Wu, L.F., Peng, Y.: Hybrid state of charge estimation for lithium-ion battery under dynamic operating conditions. Int. J. Electr. Power Energy Syst. Int. 110, 48-61 (2019) https://doi.org/10.1016/j.ijepes.2019.02.046
  16. Dong, G.-Z., Zhang, C.-B., Chen, Z.-H.: Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO4 battery using invariant imbedding method. Appl. Energy 162, 163-171 (2016) https://doi.org/10.1016/j.apenergy.2015.10.092
  17. Li, C.-L., Cui, N.-X., Wang, C.-Y., Zhang, C.-H.: Simplified electrochemical lithium-ion battery model with variable solid-phase diffusion and parameter identification over wide temperature range. J. Power Sources 497, 229900 (2021)
  18. Zhang, Q., Shang, Y.-L., Li, Y., Cui, N.-X., Duan, B., Zhang, C.-H.: A novel fractional variable-order equivalent circuit model and parameter identification of electric vehicle Li-ion batteries. ISA Trans. 97, 448-457 (2020) https://doi.org/10.1016/j.isatra.2019.08.004
  19. Kuchly, J., Goussian, A., Merveillaut, M., Baghdadi, I., Franger, S., Nelson-Gruel, D., Nouillant, C., Chamaillard, Y.: Li-ion battery SOC estimation method using a neural network trained with data generated by a P2D model. IFAC-PapersOnLine 54, 336-343 (2021) https://doi.org/10.1016/j.ifacol.2021.10.185
  20. Jiang, Z.-Y., Li, J.-H., Li, L., Gu, J.-P.: Fractional modeling and parameter identification of lithium-ion battery. Ionics 28, 4135-4148 (2022). https://doi.org/10.1007/s11581-022-04658-5
  21. Yin, H.-X., Wei, Y.-F., Zhang, Y.-J., Jing, P.-P., Cai, D.-Y., Liu, X.-M.: Identification of control parameters of the permanent magnetic synchronous generator using least square method. Energy Rep. 8, 1538-1545
  22. Ouyang, T.-C., Xu, P.-H., Chen, J.-X., Lu, J., Chen, N.: Improved parameters identification and state of charge estimation for lithium-ion battery with real-time optimal forgetting factor. Electrochim. Acta 353, 136576 (2020)
  23. Kalogiannis, T., Hosen, M.-S., Gandoman, F.-H., Sokkeh, M.-A., Jaguemont, J., Berecibar, M., Mierlo, J.-V.: Multi-objective particle swarm optimization and training of datasheet-based load dependent lithium-ion voltage models. Int. J. Elec. Power 133, 107312 (2021)
  24. Hamida, M.-A., El-Sehiemy, R.-A., Ginidi, A.-R., Elattar, E., Shaheen, A.-M.: Parameter identification and state of charge estimation of Li-Ion batteries used in electric vehicles using artificial hummingbird optimizer. J. Energy Storage 51, 104535
  25. Lai, X., Gao, W.-K., Zheng, Y.-J., Ouyang, M.-G., Li, J.-Q., Han, X.-B., Zhou, L.: A comparative study of global optimization methods for parameter identification of different equivalent circuit models for Li-ion batteries. Electrochim. Acta 295, 1057-1066 (2019) https://doi.org/10.1016/j.electacta.2018.11.134
  26. Sun, L., Han, X.-F., Xu, Y.-P., Razmjooy, N.: Exergy analysis of a fuel cell power system and optimizing it with Fractionalorder Coyote Optimization Algorithm. Energy Rep. 7, 7424-7433 (2021) https://doi.org/10.1016/j.egyr.2021.10.098
  27. Li, J.-H., Li, L., Li, Z., Gu, J.-P.: Co-estimation of parameters and state of charge for lithium-ion battery. J. Electroanal. Chem. 907, 116011
  28. Yuan, Z., Wang, W.-Q., Wang, H.-Y., Yildizbasi, A.: Developed Coyote optimization algorithm and its application to optimal parameters estimation of PEMFC model. Energy Rep. 6, 1106- 1117 (2020) https://doi.org/10.1016/j.egyr.2020.04.032
  29. Chin, V.-J., Salam, Z.: Coyote optimization algorithm for the parameter extraction of photovoltaic cells. Sol. Energy 194, 656-670 (2019) https://doi.org/10.1016/j.solener.2019.10.093
  30. Yang, X., Wang, S.-L., Xu, W.-H., Qiao, J.-L., Yu, C.-M., TakyiAninakwa, P., Jin, S.-Y.: A novel fuzzy adaptive cubature Kalman filtering method for the state of charge and state of energy co-estimation of lithium-ion batteries. Electrochim. Acta 415, 140241 (2022)
  31. Fu, S.-Y., Liu, W., Luo, W.-L., Zhang, Z.-F., Zhang, M.-H., Wu, L., Luo, C.-D., Lv, T.-L., Xie, J.-Y.: State of charge estimation of lithium-ion phosphate battery based on weighted multi-innovation cubature Kalman filter. J. Energy Storage 50, 104175 (2022)