DOI QR코드

DOI QR Code

Hybrid passivity-based control for stability and robustness enhancement in DC microgrids with constant power loads

  • Qihong Xian (School of Electrical Engineering, Shandong University) ;
  • Yubin Wang (School of Electrical Engineering, Shandong University) ;
  • Fan Wang (School of Electrical Engineering, Shandong University) ;
  • Ruixin Li (School of Electrical Engineering, Shandong University) ;
  • Song Wang (School of Electrical Engineering, Shandong University)
  • Received : 2022.05.23
  • Accepted : 2022.09.15
  • Published : 2023.02.20

Abstract

In a DC microgrid, the negative damping characteristics of a constant power load can deteriorate the stability of the whole system. To improve the robustness and stability of the DC microgrid, a hybrid passivity-based control of damping injection is presented in this paper. The stability of the closed-loop system is ensured by the energy dissipation property of the passivity-based control. A proportional-integral controller is integrated with the passivity-based controller to form a hybrid passivity-based control to improve control robustness. A small-signal model of a DC power system with constant power load is derived in detail, and the stability of the system is analyzed with the Lyapunov eigenvalue method. The proposed hybrid passivity-based control provides the system with a faster recovery and a larger power boundary when compared with the typical voltage-current dual-loop control. First, the proposed control is verified by simulation of the DC power system based on MATLAB/Simulink, and the feasibility and superiority of the proposed control are further verified by hardware-in-loop (HIL) experiments based on real-time laboratory (RT-Lab) and a TI DSP TMS320 F28335.

Keywords

Acknowledgement

Natural Science Foundation of Shandong Province, ZR2018MEE037, Yubin Wang.

References

  1. Valderrama-Blavi, H., Bosque, J.M., Guinjoan, F.: Power adaptor device for domestic DC microgrids based on commercial MPPT inverters. IEEE Trans. Ind. Elec. 60(3), 1191-1203 (2013) https://doi.org/10.1109/TIE.2012.2198038
  2. Nejabatkhah, F., Li, Y.W.: Overview of power management strategies of hybrid AC/DC microgrid. IEEE Trans Power Electron. 30(12), 7072-7089 (2015) https://doi.org/10.1109/TPEL.2014.2384999
  3. Guerrero, J.M., Don, F.D., Tan: Guest editorial special issue on structured DC microgrids. IEEE J. Emerg. Sel. Topics Power Electron. 5(3), 925-927 (2017) https://doi.org/10.1109/JESTPE.2017.2727578
  4. Elsayed, A.T., Ahmed, A.: DC microgrids and distribution systems: an overview. Electr. Power Syst. Res. 119, 407-417 (2015) https://doi.org/10.1016/j.epsr.2014.10.017
  5. Al-Ismail, F.S.: DC microgrid planning, operation, and control: a comprehensive review IEEE. Access. 9(36154), 36172 (2021)
  6. Zhao, X., Li, Y.W., Tian, H.: Energy management strategy of multiple supercapacitors in a DC microgrid using adaptive virtual impedance. IEEE J. Emerg. Sel. Topics Power Electron. 4(4), 1174-1185 (2016) https://doi.org/10.1109/JESTPE.2016.2601097
  7. Kim, H.-J., Sang-Woo, K., Gab-Su, S.: Large-signal stability analysis of dc power system with shunt active damper. IEEE Trans. Ind. Elec. 63(10), 6270-6280 (2016) https://doi.org/10.1109/TIE.2016.2581150
  8. Ahmed, M., Lasantha, M., Arash, V.: Stability and control aspects of microgrid architectures-a comprehensive review. IEEE Access 8, 144730-144766 (2020) https://doi.org/10.1109/ACCESS.2020.3014977
  9. Riccobono, A., Santi, E.: Comprehensive review of stability criteria for DC power distribution systems. IEEE Trans. Ind. Appl. 50(5), 3525-3535 (2014) https://doi.org/10.1109/TIA.2014.2309800
  10. Emadi, A., Khaligh, A., Rivetta, C.H.: Constant power loads and negative impedance instability in automotive systems: definition, modeling, stability, and control of power electronic converters and motor drives. IEEE Trans. Veh. Technol. 55(4), 1112-1125 (2006) https://doi.org/10.1109/TVT.2006.877483
  11. Liu, S., Su, P., Zhang, L.: A virtual negative inductor stabilizing strategy for DC microgrid with constant power loads. IEEE Access. 6, 59728-59741 (2018) https://doi.org/10.1109/ACCESS.2018.2874201
  12. Cespedes, M., Lei, X., Jian, S.: Constant-power Load system stabilization by passive damping. IEEE Trans. Power Electron. 26(7), 1832-1836 (2011) https://doi.org/10.1109/TPEL.2011.2151880
  13. Wu, M., Dylan Dah-Chuan, L.U.: Active stabilization methods of electric power systems with constant power loads: a review. J Mod Power Syst Clean Energy 2(3), 233-243 (2014) https://doi.org/10.1007/s40565-014-0066-y
  14. Magne, P., Babak, Nahid-Mobarakeh., Pierfederici, S.: Dynamic consideration of DC microgrids with constant power loads and active damping system a design method for fault-tolerant stabilizing System. J. Emerg. Sel. Topics Power Electron (2014). https://doi.org/10.1109/JESTPE.2014.2305979
  15. Lu, X.N., Sun, K., Josep, M., Guerrero.: Stability enhancement based on virtual impedance for DC microgrids with constant power loads. IEEE Trans. Smart Grid. 6(6), 2770-2783 (2015) https://doi.org/10.1109/TSG.2015.2455017
  16. Magne, P.: Large-signal stabilization of a DC-link supplying a constant power load using a virtual capacitor: Impact on the domain of attraction. IEEE Trans. Ind. Appl. 48(3), 878-887 (2012) https://doi.org/10.1109/TIA.2012.2191250
  17. Lee, W.J., Sul, S.K.: DC-link voltage stabilization for reduced DC-link capacitor inverter. IEEE Trans. Ind. Appl. 50(1), 404-414 (2014) https://doi.org/10.1109/TIA.2013.2268733
  18. Zhang, X., Ruan, X., Kim, et al.: Adaptive active capacitor converter for improving stability of cascaded DC power supply system. IEEE Trans. Power Electron. 28(4), 1807-1816 (2013) https://doi.org/10.1109/TPEL.2012.2213268
  19. Rahimi, A.M., Emadi, A.: Active damping in DC/DC power electronic converters: A novel method to overcome the problems of constant power loads. IEEE Trans. Ind. Elec. 56(5), 1428-1439 (2009) https://doi.org/10.1109/TIE.2009.2013748
  20. Zhao, Y., Wei, Q., Ha, D.: A sliding-mode duty-ratio controller for DC/DC buck converters with constant power loads. IEEE Trans. Ind App. 50(2), 1448-1458 (2014) https://doi.org/10.1109/TIA.2013.2273751
  21. Hossain, E., Perez, R., Padmanaban, S.: Sliding mode controller and lyapunov redesign controller to improve microgrid stability: a comparative analysis with CPL power variation. Energies 10(12), 1959 (2017)
  22. He, W., Mohammad, M., Namazi, Hamid, R., Koofgar.: Stabilization of DC-DC buck converter with unknown constant power load via passivity-based control plus proportion-integration. IET Power Electron. 14(16), 2597-2609 (2021) https://doi.org/10.1049/pel2.12205
  23. Sira-Ramirez, H., Perez-Moreno, R.A., Ortega, R.: Passivity-based controllers for the stabilization of Dc-to-Dc power converters. Automatica (Oxford). 33(4), 499-513 (1997) https://doi.org/10.1016/S0005-1098(96)00207-5
  24. Kwasinski, A., Onwuchekwa, C.N.: Dynamic behavior and stabilization of DC Microgrids with instantaneous constant-power loads. IEEE Trans. Power Electron. 26(3), 822-834 (2011) https://doi.org/10.1109/TPEL.2010.2091285
  25. Son, YIk., Kim, I Hyuk: Complementary PID controller to passivity-based nonlinear control of Boost converters with inductor resistance. IEEE Trans. Control Syst Technol. 20(3), 826-834 (2012) https://doi.org/10.1109/TCST.2011.2134099
  26. Zeng, J.-W., Zhang, Z., Qiao, W.: An interconnection and damping assignment passivity-based controller for a DC-DC Boost converter with a constant power load. IEEE Trans. Ind. Appl. 50(4), 2314-2322 (2014) https://doi.org/10.1109/TIA.2013.2290872
  27. Gil-Gonzalez, W., Montoya, O., A. Herrera-Orozco.2020 Adaptive IDA-PBC applied to on-board Boost converter supplying a constant power load. IEEE Andescon. 1-5
  28. Hassan, Mustafa, A., Li, E-p., Li, X.: Adaptive passivity-based control of DC-DC buck power converter with constant power load in DC microgrid systems. IEEE J. Emerg. Sel. Topics Power Electron. 7(3), 2029-2040 (2019) https://doi.org/10.1109/jestpe.2018.2874449
  29. Hassan, M., Su, C.-L., Chen, F.-Z.: Adaptive passivity-based control of a DC-DC boost power converter supplying constant power and constant voltage loads. IEEE Trans. Ind. Elec. 69(6), 6204-6214 (2022) https://doi.org/10.1109/TIE.2021.3086723