DOI QR코드

DOI QR Code

Improved adaptive iterative learning current control approach for IPMSM drives

  • Received : 2022.09.03
  • Accepted : 2022.12.11
  • Published : 2023.02.20

Abstract

The paper presents an improved adaptive iterative learning current control approach for interior permanent magnet synchronous motor (IPMSM) drives, which greatly improves performance in both dynamic and steady-state scenarios. The proposed method includes three control terms: feedback control terms, which stabilize state errors and get them closer to zero; iterative learning control terms, which enhance transient performance by updating the control command signals according to the recorded data (i.e., the preceding input and state errors) so they get closer to zero; and adaptive-terms, which compensate for parameter variations. The proposed method offers a robust dynamic/steady-state response due to the above three terms, when compared to the conventional non-adaptive ILC, i.e., it is sensitive to parameter variations. Simulation and experimental analysis confirm the efficacy of the proposed method using PSIM software tools and an IPMSM test-bed. The proposed method demonstrates improvements in terms of its transient response (i.e., fast settling time with a smaller overshoot) and steady-state response (i.e., less THD along with reduced current ripples) when compared with conventional methods.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20182410105160 Demonstration and Development of ESS Solution Connected with Renewable Energy against with the weather condition of Middle East Region, No. 20206910100160).

References

  1. Liu, P., Liu, D., Shen, Y., Liu, A., Yang, X., Zhao, J.: Full speed range position-sensorless compound control scheme for PMSMs. J. Power. Electron. 22(8), 1302-1312 (2022) https://doi.org/10.1007/s43236-022-00441-x
  2. Xu, Y., Hu, M., Yan, Z., Zhang, Y., Ma, H.: A three-vector-based model predictive fux control for PMSM drives. J. Electr. Eng. Technol. 16, 2673-2684 (2021) https://doi.org/10.1007/s42835-021-00815-4
  3. Jin, D., Zhang, H., Zhu, S., Wang, A., Jiang, J.: Two-vector predictive current control strategy based on maximum torque per ampere control for PMSMs. J. Power Electron. 22(8), 1313-1323 (2022) https://doi.org/10.1007/s43236-022-00442-w
  4. Moon, J.H., Kang, D.W.: Torque ripple and cogging torque reduction method of IPMSM using asymmetric shoe of stator and notch in stator. J. Electr. Eng. Technol. 17, 3465-3471 (2022) https://doi.org/10.1007/s42835-022-01266-1
  5. Zhang, Z., Chen, Y., Feng, X., Xie, S., Zhao, C.: Linear active disturbance rejection speed control with variable gain load torque sliding mode observer for IPMSMs. J Power Electron. 22(8), 1290-1301 (2022) https://doi.org/10.1007/s43236-022-00429-7
  6. Choi, H.H., Kim, E.K., Yu, D.Y., Jung, J.-W., Kim, T.H.: Precise PI speed control of permanent magnet synchronous motor with a simple learning feedforward compensation. Electr. Eng. 99(1), 133-139 (2017) https://doi.org/10.1007/s00202-016-0407-0
  7. Jung, J.-W., Choi, Y.-S., Leu, V.Q., Choi, H.H.: Fuzzy PI-type current controllers for permanent magnet synchronous motors. IET Electr. Power Appl. 5(1), 143 (2011)
  8. Nguyen, A.T., Rafaq, M.S., Choi, H.H., Jung, J.-W.: Observer-based deadbeat predictive speed controller for surface-mounted PM synchronous motor. ISA Trans. 110, 305-318 (2020) https://doi.org/10.1016/j.isatra.2020.10.047
  9. Dai, S., Wang, J., Sun, Z., Chong, E.: Deadbeat predictive current control for high-speed permanent magnet synchronous machine drives with low switching-to-fundamental frequency ratios. IEEE Trans. Ind. Electron. 69(5), 4510-4521 (2022) https://doi.org/10.1109/TIE.2021.3078383
  10. Agoro, S., Husain, I.: Robust deadbeat fnite-set predictive current control with torque oscillation and noise reduction for PMSM drives. IEEE Trans. Ind. Appl. 58(1), 365-374 (2022) https://doi.org/10.1109/TIA.2021.3130022
  11. Wang, C., Zhu, Z.Q.: Fuzzy logic speed control of permanent magnet synchronous machine and feedback voltage ripple reduction in fux-weakening operation region. IEEE Trans. Ind. Appl. 56(2), 1505-1517 (2020) https://doi.org/10.1109/TIA.2020.2967673
  12. Yan, H., Xu, Y., Cai, F., Zhang, H., Zhao, W., Gerada, C.: PWMVSI fault diagnosis for a PMSM drive based on the fuzzy logic approach. IEEE Trans. Power Electron. 34(1), 759-768 (2019) https://doi.org/10.1109/TPEL.2018.2814615
  13. Li, Z., Wang, K., Wang, J., Zhang, L., Sun, H.: Full-coefcient intelligent adaptive position control of permanent magnet synchronous linear motor. J. Electr. Eng. Technol. (2022). https://doi.org/10.1007/s42835-022-01256-3
  14. Yi, P., Wang, X., Chen, D., Sun, Z.: PMSM current harmonics control technique based on speed adaptive robust control. IEEE Trans. Transp. Electric. 8(2), 1794-1806 (2022)
  15. Zhang, R., Yin, Z., Du, N., Liu, J., Tong, X.: Robust adaptive current control of a 1.2-MW direct-drive PMSM for traction drives based on internal model control with disturbance observer. IEEE Trans. Transp. Electric. 7(3), 1466-1481 (2021) https://doi.org/10.1109/TTE.2021.3058012
  16. Yao, M., Peng, J., Sun, X.: Robust model predictive current control for six-phase PMSMS with virtual voltage vectors. J Power Electron. 22, 1885-1896 (2022) https://doi.org/10.1007/s43236-022-00496-w
  17. Zhang, X., Tao, R., Xu, X., Wang, T., Zhang, H.: Predictive current control of a PMSM three-level dual-vector model based on self-anti-disturbance techniques. J. Electr. Eng. Technol. 11, 1-4 (2022) https://doi.org/10.1007/s42835-022-01100-8
  18. Ahmed, A., Koh, B.K., Lee, Y.I.: A Comparison of fnite control set and continuous control set model predictive control schemes for speed control of induction motors. IEEE Trans. Ind. Inform. 14(4), 1334-1346 (2018) https://doi.org/10.1109/tii.2017.2758393
  19. Mandra, S., Galkowski, K., Rogers, E., Rauh, A., Aschemann, H.: Performance-enhanced robust iterative learning control with experimental application to PMSM position tracking. IEEE Trans. Control Syst. Technol. 27(4), 1813-1819 (2019) https://doi.org/10.1109/TCST.2018.2816906
  20. Xia, C., Deng, W., Shi, T., Yan, Y.: Torque ripple minimization of PMSM using parameter optimization based iterative learning control. J. Electr. Eng. Technol. 11(2), 425-436 (2016) https://doi.org/10.5370/JEET.2016.11.2.425
  21. Owens, D.H., Freeman, C.T., Chu, B.: Generalized norm optimal iterative learning control with intermediate point and sub-interval tracking. Int. J. Autom. Comput. 12(3), 243-253 (2015) https://doi.org/10.1007/s11633-015-0888-8
  22. Ahn, H.-S., Chen, Y., Moore, K.L.: Iterative learning control: brief survey and categorization. IEEE Trans. Syst. Man. Cybern. C. 37(6), 1099-1121 (2007) https://doi.org/10.1109/TSMCC.2007.905759
  23. Wu, X., Xiong, C., Yang, S., Yang, H., Feng, X.: A simplifed space vector pulsewidth modulation scheme for three-phase cascaded H-bridge inverters. IEEE Trans. Power Electron. 35(4), 4192-4204 (2020) https://doi.org/10.1109/tpel.2019.2934821
  24. Li, Z., Guo, Y., Xia, J., Duan, Y., Zhang, X.: Modifed synchronized SVPWM strategies to reduce CMV for three-phase VSIs at low switching frequency. IEEE Trans. Ind. Appl. 56(5), 5245-5256 (2020) https://doi.org/10.1109/tia.2020.3009216