DOI QR코드

DOI QR Code

Optimization of sideband electromagnetic vibration and comprehensive control performance of PMSMs based on improved vector control

  • Shichang Liu (School of Electrical Engineering, Shanghai Dianji University) ;
  • Quanfeng Li (School of Electrical Engineering, Shanghai Dianji University) ;
  • Xuanyu Hong (School of Electrical Engineering, Shanghai Dianji University) ;
  • Yahui Zuo (School of Electrical Engineering, Shanghai Dianji University) ;
  • Dingjiang Zou (School of Electrical Engineering, Shanghai Dianji University)
  • Received : 2022.06.11
  • Accepted : 2022.09.15
  • Published : 2023.02.20

Abstract

To effectively suppress the electromagnetic vibration generated by a permanent magnet motor at different frequency bands and to further improve the comprehensive control performance of the system, a new vector control strategy is proposed in this paper. The speed controller and current controller of the traditional vector control system of a permanent magnet synchronous motor (PMSM) are improved by means of an active disturbance rejection controller (ADRC) and a super-twisting sliding mode controller (STSMC). At the same time, random frequency space pulse width modulation (RFSVPWM) based on a periodic function is proposed to replace the traditional SVPWM. First, the expression of the radial electromagnetic force wave generated by motor supply current harmonics in low and medium frequency as well as high-frequency sideband is deduced by an analytical method, and the reason for the generation of the new radial electromagnetic force based on PI vector control is determined. Second, the ADRC, STSMC, and RFSVPWM are designed to suppress the power supply current harmonics and radial electromagnetic force components that greatly contribute to the electromagnetic vibration of the motor in different frequency bands. Finally, the superiority of the improved PMSM vector control system in terms of the comprehensive control performance and electromagnetic vibration is verified by multi-physics coupled finite element simulations.

Keywords

Acknowledgement

This research was supported by the funding of Shanghai Science Technology Plan Project (22PJ1404300).

References

  1. Fang, Y., Zhang, T.: Vibroacoustic characterization of a permanent magnet synchronous motor powertrain for electric vehicles. IEEE Trans. Energy Convers. 33(1), 272-280 (2018) https://doi.org/10.1109/TEC.2017.2737483
  2. Liang, W., Luk, P.C., Fei, W.: Analytical investigation of sideband electromagnetic vibration in integral-slot PMSM drive with SVPWM technique. IEEE Trans. Power Electron. 32(6), 4785-4795 (2017) https://doi.org/10.1109/TPEL.2016.2602944
  3. Deng, W., Zuo, S.: Comparative study of sideband electromagnetic force in internal and external rotor PMSMs with SVPWM technique. IEEE Trans. Ind. Electron. 66(2), 956-966 (2019) https://doi.org/10.1109/tie.2018.2821110
  4. Huang, Y., Xu, Y., Zhang, W., Zou, J.: Hybrid RPWM technique based on modifed SVPWM to reduce the PWM acoustic noise. IEEE Trans. Power Electron. 34(6), 5667-5674 (2019) https://doi.org/10.1109/tpel.2018.2869980
  5. Liu, J., Li, H., Deng, Y.: Torque ripple minimization of PMSM based on robust ILC via adaptive sliding mode control. IEEE Trans. Power Electron. 33(4), 3655-3671 (2018) https://doi.org/10.1109/TPEL.2017.2711098
  6. Zuo, Y., Mei, J., Jiang, C., Yuan, X., Xie, S., Lee, C.H.T.: Linear active disturbance rejection controllers for PMSM speed regulation system considering the speed flter. IEEE Trans. Power Electron. 36(12), 14579-14592 (2021)
  7. Hou, Q., Ding, S.: Finite-time extended state observer-based super-twisting sliding mode controller for PMSM drives with inertia identifcation. IEEE Trans. Transport. Electrifc. 8(2), 1918-1929 (2022) https://doi.org/10.1109/TTE.2021.3123646
  8. Sun, X., Cao, J., Lei, G., Guo, Y., Zhu, J.: A robust deadbeat predictive controller with delay compensation based on composite sliding-mode observer for PMSMs. IEEE Trans. Power Electron. 36(9), 10742-10752 (2021)
  9. Jin, Z., Sun, X., Lei, G., Guo, Y., Zhu, J.: Sliding mode direct torque control of SPMSMs based on a hybrid wolf optimization algorithm. IEEE Trans. Ind. Electron. 69(5), 4534-4544 (2022)
  10. Sun, X., Cao, J., Lei, G., Guo, Y., Zhu, J.: A composite sliding mode control for SPMSM drives based on a new hybrid reaching law with disturbance compensation. IEEE Trans. Transport. Electrifc. 7(3), 1427-1436 (2021) https://doi.org/10.1109/TTE.2021.3052986
  11. Lu, Y., Li, J., Qu, R., Ye, D., Lu, H.: Electromagnetic force and vibration study on axial fux permanent magnet synchronous machines with dual three-phase windings. IEEE Trans. Ind. Electron. 67(1), 115-125 (2020) https://doi.org/10.1109/TIE.2018.2890494
  12. Fang, H., Li, D., Qu, R., Yan, P.: Modulation efect of slotted structure on vibration response in electrical machines. IEEE Trans. Ind. Electron. 66(4), 2998-3007 (2019) https://doi.org/10.1109/TIE.2018.2847639
  13. Qiu, Z., Chen, Y., Liu, X., Kang, Y., Liu, H.: Analysis of the sideband current harmonics and vibro-acoustics in the PMSM with SVPWM. IET Power Electronics. 13(5), 1033-1040 (2020) https://doi.org/10.1049/iet-pel.2019.0661
  14. Han, J.Q.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900-906 (2009) https://doi.org/10.1109/TIE.2008.2011621
  15. Zhou, K., Ai, M., Sun, Y., Wu, X., Li, R.: PMSM vector control strategy based on active disturbance rejection controller. Energies 12(20), 3827 (2019)
  16. Hao, Z., Yang, Y., Gong, Y., Hao, Z.Q., Zhang, Z., Song, H., Zhang, J.: Linear/Nonlinear active disturbance rejection switching control for permanent magnet synchronous motors. IEEE Trans. Power Electron. 36(8), 9334-9347 (2021) https://doi.org/10.1109/TPEL.2021.3055143
  17. Levant, A.: Principles of 2-sliding mode design. Automatica 43(4), 576-586 (2007) https://doi.org/10.1016/j.automatica.2006.10.008