DOI QR코드

DOI QR Code

Wide input range non-isolated three-port converters for stand-alone PV storage power systems

  • Shengwei Gao (Department of Electrical Engineering, Tiangong University) ;
  • Qingtong Zhu (Department of Electrical Engineering, Tiangong University)
  • Received : 2022.05.23
  • Accepted : 2022.10.04
  • Published : 2023.02.20

Abstract

To address the instability of the input voltage of photovoltaic (PV) in a stand-alone PV storage power generation system, a wide input range non-isolated three-port converter that can operate in a range that is greater than and less than the voltage of the storage port is proposed in this paper. The proposed converter can realize the energy flow and power balance between the PV, the battery, and the load. This converter is a combination of conventional Buck, Boost, and Buck-Boost converters with a four-switch bi-directional Buck-Boost converter (FSBB). The FSBB is used to connect the PV and battery ports, which can reduce the voltage constraint of the storage port on the PV port voltage, and broaden the selection of the voltage levels of the storage port to meet the application requirements of the PV port with a wide voltage input. In this paper, an experimental prototype is designed by combining the Boost converter and the FSBB converter. Finally, the correctness of the theoretical analysis and the feasibility of the energy management strategy of the converter are verified through experimental results.

Keywords

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant (51807139), in part by the Science and Technology Planning Project of Tianjin under Grant (20YDTPJC01520).

References

  1. Cabrane, Z., Kim, J., Yoo, K., Lee, S.: Comparative analysis of photovoltaic/rechargeable batteries sizing-dependent configurations for optimal energy management strategies in microgrids. J. Power Electron. 22(5), 841-849 (2022) https://doi.org/10.1007/s43236-022-00406-0
  2. Li, X., Zhang, R., Bai, L., Li, G., Jiang, T., Chen, H.: Stochastic low-carbon scheduling with carbon capture power plants and coupon-based demand response. Appl. Energy 210, 1219-1228 (2018) https://doi.org/10.1016/j.apenergy.2017.08.119
  3. Cui, Y., Deng, G., Zhao, Y.: Economic dispatch of power system with wind power considering the complementarity of low-carbon characteristics of source side and load side. Proc. Csee 41(14), 4799-4815 (2021)
  4. Cheng, T., Lu, D.C.: Three-port converters with a flexible power flow for Integrating PV and energy storage into a DC Bus. J. Power Electron. 17(6), 1433-1444 (2017)
  5. Wei, Y.A., Hm, B., Sp, C., Dl, C., Zmad, E., Ud, F.: Analysis and implementation of multi-port bidirectional converter for hybrid energy systems- sciencedirect. Energy Rep. 8, 1538-1549 (2022) https://doi.org/10.1016/j.egyr.2021.12.068
  6. Wu, H., Xu, P., Hu, H., Zhou, Z., Xing, Y.: Multiport converters based on integration of full-bridge and bidirectional DC-DC topologies for renewable generation systems. IEEE Trans. Industr. Electron. 61(2), 856-869 (2014) https://doi.org/10.1109/TIE.2013.2254096
  7. Erfan Meshkati., Packnezhad M., Farzanehfard H.: Single inductor bidirectional multi-input converter with continuous battery current based On integration of Buck and three port Boost topologies. 2022 13th power electronics, drive systems, and technologies conference (PEDSTC) 362-367 (2022)
  8. Suresh, K., Chellammal, N., Bharatiraja, C., Sanjeevikumar, P., Blaabjerg, F., Nielsen, J.: Cost-efficient nonisolated three-port DC-DC converter for EV/HEV applications with energy storage. Int. Trans. Electr. Energ. Syst. (2019). https://doi.org/10.1002/2050-7038.12088
  9. Sun, X., Zhou, Y., Wang, W., Wang, B., Zhang, Z.: Alternative source-port-tolerant series-connected double-input DC-DC converter. IEEE Trans. Power Electron. 30(5), 2733-2742 (2014) https://doi.org/10.1109/TPEL.2014.2352269
  10. Xueping, Yu., Chunming, Tu., Fan, X., et al.: Soft switching characteristics of the three-port isolated DC-DC converter. Trans. China Electro-tech. Soc. 36(23), 5014-5026 (2021)
  11. Sim, J., Lee, J.Y., Jung, J.H.: Isolated three-port DC-DC converter employing ESS to obtain voltage balancing capability for bipolar LVDC distribution system. J Power Electron. 20(1), 802-810 (2020) https://doi.org/10.1007/s43236-020-00065-z
  12. Qian, Z., Abdel-Rahman, O., Al-Atrash, H., Batarseh, I.: Modeling and control of three-port DC/DC converter interface for satellite applications. IEEE Trans. Power Electron. 25(3), 637-649 (2010) https://doi.org/10.1109/TPEL.2009.2033926
  13. Hongfei, W.U., Xia, Y., Xing, Y.: Three-port converter topologies based on dual-input/dual-output converter. Proc. Csee 31(27), 45-51 (2011)
  14. Kumar, L., Jain, S.: Multiple-input DC/DC converter topology for hybrid energy system. IET Power Electron. 6(8), 1483-1501 (2013) https://doi.org/10.1049/iet-pel.2012.0309
  15. Zhang, J., Wu, H., Cao, F., Zhu, L., Xing, Y.: A non-isolated bidirectional three-port boost converter. Chin. J. Electr. Eng. 34(33), 72 (2014)
  16. Zhu, H., Zhang, D., Zhang, B., Zhou, Z.: A Nonisolated threeport DC-DC converter and three-domain control method for PVbattery power systems. IEEE Trans. Industr. Electron. 62(8), 1-1 (2015) https://doi.org/10.1109/TIE.2015.2393831
  17. Zhang, P., Yu, C., Yong, K.: Nonisolated wide operation range three-port converters with variable structures. IEEE J. Emerging Sel. Top. Power Electron. 5(2), 854-869 (2017) https://doi.org/10.1109/JESTPE.2017.2657542
  18. Saadabad, N.Z., Hosseini, S.H., Nasiri, A., Sabahi, M.: New softswitched high gain three-port DC-DC converter with coupled inductors. IET Power Electron. 13(19), 4562-4571 (2021) https://doi.org/10.1049/iet-pel.2020.0452
  19. Lee, Y.J., Khaligh, A., Chakraborty, A., Emadi, A.: Digital combination of buck and boost converters to control a positive Buck- Boost converter and improve the output transients. IEEE Trans. Power Electron. 24(5), 1267-1279 (2009) https://doi.org/10.1109/TPEL.2009.2014066
  20. Ren, X., Ruan, X., Qian, H., Li, M., Chen, Q.: Three-mode dualfrequency two-edge modulation scheme for four-switch Buck-Boost converter. IEEE Trans. Power Electron. 24(2), 499-509 (2009) https://doi.org/10.1109/TPEL.2008.2005578
  21. Nagaraja, R.S., Kumar, A.S., Manjunatha, B.M., Kiran, K., Praveen, K.V., Pranupa, S.: Interleaved high-gain boost converter powered by solar energy using hybrid-based MPP tracking technique. Clean Energy 3, 460-475 (2022) https://doi.org/10.1093/ce/zkac026
  22. Li, X., Long, T., Tian, J., Tian, Y.: Multi-state joint estimation for a lithium-ion hybrid capacitor over a wide temperature range. J. Power Sour. 479, 228677 (2020)