DOI QR코드

DOI QR Code

Reduced-order controller design for Cuk converters based on objective holographic feedback

  • Jiyong Li (School of Electrical Engineering, Guangxi University) ;
  • Pengcheng Zhou (School of Electrical Engineering, Guangxi University) ;
  • Hengyu Pan (School of Electrical Engineering, Guangxi University) ;
  • Duanzheng Feng (School of Electrical Engineering, Guangxi University) ;
  • Bin Liu (School of Electrical Engineering, Guangxi University)
  • Received : 2022.06.10
  • Accepted : 2022.10.04
  • Published : 2023.02.20

Abstract

Since the Cuk converter is a non-minimum phase system with an unstable internal dynamic, it is challenging to employ control methods such as input-output linearization to ensure the closed-loop system stability. This paper proposes an objective holographic feedback nonlinear control (OHFNC) method without static deviation to regulate fourth-order Cuk converters. A Cuk converter operating in the continuous conduction mode is adopted, and the input inductor current and output capacitor voltage of the system are selected as control target quantities. The OHFNC method aims to configure a nonlinear system with poles near the equilibrium point, and place them in desired positions. The target quantities are separately constrained by feedback coefficients, which forces them to converge to their corresponding reference trajectories. Accordingly, an integration link is introduced to compensate for the reference current error when the system is heavily loaded. Finally, simulation and experimental results show that the OHFNC method has a stronger robustness and a faster transient response than fractional-order PIλ dual-loop control.

Keywords

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China under Grant No. 61863003.

References

  1. Zhang, W., Zhang, H., Zhi, N., et al.: Optimal strategy for energy management of DC multi-microgrids considering power loss. J. Power Electron. 22(7), 629-640 (2022) https://doi.org/10.1007/s43236-021-00361-2
  2. Hoang, K.D., Lee, H.: State of charge balancing for distributed batteries in DC microgrids without communication networks. J. Power Electron. 21(2), 405-415 (2021) https://doi.org/10.1007/s43236-020-00188-3
  3. Hou, N., Li, Y.: Communication-free power management strategy for the multiple DAB-based energy storage system in Islanded DC microgrid. IEEE Trans. Power Electron. 36(4), 4828-4838 (2021) https://doi.org/10.1109/TPEL.2020.3019761
  4. Ninma Jiya, I., Van Khang, H., Kishor, N., et al.: Novel family of high-gain nonisolated multiport converters with bipolar symmetric outputs for DC microgrids. IEEE Trans. Power Electron. 37(10), 12151-12166 (2022) https://doi.org/10.1109/TPEL.2022.3176688
  5. Jia, Y., Zhao, P., Tian, J., et al.: Unified coordination control strategy for DC solid-state transformer in DC microgrid. J. Power Electron. 22(8), 1374-1385 (2022) https://doi.org/10.1007/s43236-022-00432-y
  6. Xu, L., et al.: A review of dc shipboard microgrids-part I: power architectures, energy storage and power converters. IEEE Trans. Power Electron. 37(5), 5155-5172 (2022) https://doi.org/10.1109/TPEL.2021.3128417
  7. Li, F., et al.: Smart transmission grid: vision and framework. IEEE Trans. Smart Grid. 1(2), 168-177 (2010) https://doi.org/10.1109/TSG.2010.2053726
  8. Al-Ismail, F.S.: DC microgrid planning, operation, and control: a comprehensive review. IEEE Access 9, 36154-36172 (2021) https://doi.org/10.1109/ACCESS.2021.3062840
  9. Bhargavi, K.M., Jayalakshmi, N.S., Gaonkar, D.N., et al.: A comprehensive review on control techniques for power management of isolated DC microgrid system operation. IEEE Access 9, 32196-32228 (2021) https://doi.org/10.1109/ACCESS.2021.3060504
  10. Ansari, S., Chandel, A., Tariq, M.: A comprehensive review on power converters control and control strategies of AC/DC Microgrid. IEEE Access 9, 17998-18015 (2021) https://doi.org/10.1109/ACCESS.2020.3020035
  11. Sulligoi, G., Bosich, D., Giadrossi, G., et al.: Multiconverter medium voltage DC power systems on ships: constant-power loads instability solution using linearization via state feedback control. IEEE Trans. Smart Grid 5(5), 2543-2552 (2014) https://doi.org/10.1109/TSG.2014.2305904
  12. Liu, S., Su, P., Zhang, L.: A virtual negative inductor stabilizing strategy for DC microgrid with constant power loads. IEEE Access 6, 59728-59741 (2018) https://doi.org/10.1109/ACCESS.2018.2874201
  13. Lin, X., Jin, Z., Wang, F., et al.: A novel bridgeless Cuk PFC converter with further reduced conduction losses and simple circuit structure. IEEE Trans. Ind. Electron. 68(11), 10699-10708 (2021) https://doi.org/10.1109/TIE.2020.3031527
  14. Khodabandeh, M., Afshari, E., Amirabadi, M.: A family of Cuk, zeta, and SEPIC based soft-switching DC-DC converters. IEEE Trans. Power Electron. 34(10), 9503-9519 (2019) https://doi.org/10.1109/TPEL.2019.2891563
  15. Chen, W., Liu, Y., Li, X., et al.: A novel method of reducing commutation torque ripple for brushless DC motor based on Cuk converter. IEEE Trans. Power Electron. 32(7), 5497-5508 (2017) https://doi.org/10.1109/TPEL.2016.2613126
  16. Luo, J., et al.: Novel Cuk-based bridgeless rectifer of wireless power transfer system with wide power modulation range and low current ripple. IEEE Trans. Ind. Electron. 69(3), 2533-2544 (2022) https://doi.org/10.1109/TIE.2021.3066927
  17. Liu, Y., Zhang, H., Wang, H., et al.: Peak and valley current control for Cuk PFC converter to reduce capacitance. IEEE Trans. Power Electron. 37(1), 313-321 (2022) https://doi.org/10.1109/TPEL.2021.3099218
  18. Chen, H.X., Lin, W.M., Zeng, T.: A high gain step-up Cuk circuit with scalable cell. Zhongguo Dianji Gongcheng Xuebao/Proc. Chin. Soc. Electron. Eng. 39(23), 7013-7022 (2019)
  19. Zhang, M., Jing, X., Wang, G.: Bioinspired nonlinear dynamics-based adaptive neural network control for vehicle suspension systems with uncertain/unknown dynamics and input delay. IEEE Trans. Ind. Electron. 68(12), 12646-12656 (2021) https://doi.org/10.1109/TIE.2020.3040667
  20. Liang, H., Li, H., Xu, D.: Nonlinear model predictive trajectory tracking control of underactuated marine vehicles: theory and experiment. IEEE Trans. Ind. Electron. 68(5), 4238-4248 (2021) https://doi.org/10.1109/TIE.2020.2987284
  21. Kushwaha, R., Singh, B., Khadkikar, V.: An isolated bridgeless Cuk-SEPIC converter-fed electric vehicle charger. IEEE Trans. Ind. Appl. 58(2), 2512-2526 (2022) https://doi.org/10.1109/TIA.2021.3136496
  22. Wang, Y., Xu, L.M., Li, A., et al.: Dynamical behavior analysis for current mode controlled single-inductor dual-output buck converter. Zhongguo Dianji Gongcheng Xuebao/Proc. Chin. Soc. Electron. Eng. 37(2), 643-652 (2017)
  23. Chen, Z.: PI and sliding mode control of a Cuk converter. IEEE Trans. Power Electron. 27(8), 3695-3703 (2012) https://doi.org/10.1109/TPEL.2012.2183891
  24. Zhou, G.H., Tan, W., Zhou, S.H., et al.: Modeling and Transient performance analysis of V2 controlled Cuk converter. Diangong Jishu Xuebao/Trans. Electron. Technol. 36(4), 820-830 (2021)
  25. Lekic, A., Stipanovic, D., Petrovic, N.: Controlling the Cuk converter using polytopic Lyapunov functions. IEEE Trans. Circuit. Syst. II 65(11), 1678-1682 (2018)
  26. Shuai, D.X.: Direct current control of Cuk converter with input/output linearization. Dianli Xitong Jiqi Zidonghua Xuebao/Proc. CSU-EPSA 28(12), 119-123 (2016)
  27. Zou, Y., Zhang, L., Qin, J., et al.: Phase-unsynchronized power decoupling control of MMC based on feedback linearization. IEEE Trans. Power Electron. 37(3), 2946-2958 (2022) https://doi.org/10.1109/TPEL.2021.3119527
  28. Accetta, A., Cirrincione, M., Pucci, M., et al.: Feedback linearization based nonlinear control of SynRM drives accounting for self- and cross-saturation. IEEE Trans. Ind. Appl. 58(3), 3637-3651 (2022) https://doi.org/10.1109/TIA.2022.3155511
  29. Berger, T.: The zero dynamics form for nonlinear differential-algebraic systems. IEEE Trans. Autom. Control 62(8), 4131-4137 (2017)  https://doi.org/10.1109/TAC.2016.2620561