DOI QR코드

DOI QR Code

Comprehensive evaluating the stability of slope reinforced with free and fixed head piles

  • Xixi Xiong (College of Civil Engineering, Architecture and Environment, Hubei University of Technology) ;
  • Ying Fan (College of Civil Engineering, Architecture and Environment, Hubei University of Technology) ;
  • Jinzhe Wang (College of Civil Engineering, Architecture and Environment, Hubei University of Technology) ;
  • Pooya Heydari (Department of Geotechnical engineering, Moghadas Ardabili Institute of Higher Education)
  • Received : 2022.08.24
  • Accepted : 2023.02.15
  • Published : 2023.03.10

Abstract

The failure of slope can cause remarkable damage to either human life or infrastructures. Stabilizing piles are widely utilized to reinforce slope as a slip-resistance structure. The workability of pile-stabilized slopes is affected by various parameters. In this study, the performance of earth slope reinforced with piles and the behavior of piles under static load, by shear reduction strength method using the finite difference software (FLAC3D) has been investigated. Parametric studies were conducted to investigate the role of pile length (L), different pile distances from each other (S/D), pile head conditions (free and fixed head condition), the effect of sand density (loose, medium, and high-density soil) on the pile behavior, and the performance of pile-stabilized slopes. The performance of the stabilized slopes was analyzed by evaluating the factor of safety, lateral displacement and bending moment of piles, and critical slip mechanism. The results depict that as L increased and S/D reduced, the performance of slopes stabilized with pile gets better by raising the soil density. The greater the amount of bending moment at the shallow depths of the pile in the fixed pile head indicates the effect of the inertial force due to the structure on the pile performance.

Keywords

References

  1. Alemdag, S., Akgun, A., Kaya, A. and Gokceoglu, C. (2014), "A large and rapid planar failure: causes, mechanism, and consequences (Mordut, Gumushane, Turkey)", Arabian J. Geosci., 7(3), 1205-1221. https://doi.org/10.1007/s12517-012-0821-1.
  2. Aghayari Hir, M., Zaheri, M. and Rahimzadeh, N. (2022), "Prediction of rural travel demand by spatial regression and artificial neural network methods (Tabriz County)", J. Transport. Res., https://doi.org/10.22034/TRI.2022.312204.2970.
  3. Ausilio, E., Conte, E. and Dente, G. (2001), "Stability analysis of slopes reinforced with piles", Comput. Geotech., 28(8), 591-611. https://doi.org/10.1016/S0266-352X(01)00013-1.
  4. Beer, E.E. and Wallays, M. (1972), "Forces induced in piles by unsymmetrical surcharges on the soil around the piles", Proceedings of the 5th Eur Conf On Soil Proc/Sp/, Conf Paper.
  5. Benemaran, R.S. and Esmaeili-Falak, M. (2020), "Optimization of cost and mechanical properties of concrete with admixtures using MARS and PSO", Comput. Concrete, 26(4), 309-316. https://doi.org/10.12989/cac.2020.26.4.309.
  6. Briancon, L. and Simon, B. (2012), "Performance of pile-supported embankment over soft soil: Full-scale experiment", J. Geotech. Geoenviron. Eng., 138(4), 551-561. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000561.
  7. Cai, F. and Ugai, K. (2000), "Numerical analysis of the stability of a slope reinforced with piles", Soils Found., 40(1), 73-84. https://doi.org/10.3208/sandf.40.73.
  8. Chen, L.T. and Poulos, H.G. (1997), "Piles subjected to lateral soil movements", J. Geotechn. Geoenviron. Eng., 123(9), 802-811. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:9(802).
  9. Cheng, Y.M., Lansivaara, T. and Wei, W.B. (2007), "Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods", Comput. Geotech., 34(3), 137-150. https://doi.org/10.1016/j.compgeo.2006.10.011.
  10. Chow, Y.K. (1996), "Analysis of piles used for slope stabilization", Int. J. Numer. Anal. Method. Geomech., 20(9), 635-646. https://doi.org/10.1002/(SICI)1096-9853(199609)20:9<635::AIDNAG839>3.0.CO;2-X.
  11. Dai, W., Jiang, P., Ding, J. and Fu, B. (2017), "The influence of strength reduction method on slope stability under different instability criteria", Proceedings of the International Conference on Architectural Engineering and New Materials.
  12. Davies, J.P., Loveridge, F.A., Perry, J., Patterson, D. and Carder, D. (2003), Stabilisation of a landslide on the M25 highway London's main artery.
  13. Dawson, E.M., Roth, W.H. and Drescher, A. (1999), "Slope stability analysis by strength reduction", Geotechnique, 49(6), 835-840. https://doi.org/10.1680/geot.1999.49.6.835.
  14. Demerdash, M.A. (1996), An experimental study of piled embankments incorporating geosynthetic basal reinforcement. Newcastle University. http://theses.ncl.ac.uk/jspui/handle/10443/309
  15. Donald, I.B. andGiam, S.K. (1988), "Application of the nodal displacement method to slope stability analysis", Proceedings of the Australia-New Zealand Conference on Geomechanics, 5th, 1988, Sydney, 88/11.
  16. Esmaeili-Choobar, N., Esmaeili-Falak, M., Roohi-hir, M. and Keshtzad, S. (2013), "Evaluation of collapsibility potential at Talesh, Iran", EJGE, 18, 2561-73.
  17. Esmaeili-Falak, M. and Hajialilue-Bonab, M. (2012), "Numerical studying the effects of gradient degree on slope stability analysis using limit equilibrium and finite element methods", Int. J. Academic Res., 4(4), 216-222. https://doi.org/10.7813/2075-4124.2012/4-4/A.30
  18. Esmaeili-Falak, M., Katebi, H., Vadiati, M. and Adamowski, J. (2019), "Predicting triaxial compressive strength and Young's modulus of frozen sand using artificial intelligence methods", J. Cold Reg. Eng., 33(3), 04019007. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000188.
  19. Esmaeili-Falak, M., Katebi, H. and Javadi, A. (2018), "Experimental study of the mechanical behavior of frozen soils-A case study of tabriz subway", Periodica Polytechnica Civil Eng., 62(1), 117-125. https://doi.org/10.3311/PPci.10960.
  20. Esmaeili Falak, M. and Sarkhani Benemaran, R. (2022), "Investigating the stress-strain behavior of frozen clay using triaxial test", J. Struct. Constr. Eng., 10.22065/JSCE.2022.332406.2747.
  21. Fahimifar, A., Abdolmaleki, A. and Soltani, P. (2014), "Stabilization of rock slopes using geogrid boxes", Arabian J. Geosci., 7(2), 609-621. https://doi.org/10.1007/s12517-012-0755-7.
  22. Fan, W., Wei, Y. and Deng, L. (2018), "Failure modes and mechanisms of shallow debris landslides using an artificial rainfall model experiment on Qin-ba mountain", Int. J. Geomech., 18(3), 4017157. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001068.
  23. Fang Pai, L. and Gang Wu, H. (2021), "Shaking table test of comparison and optimization of seismic performance of slope reinforcement with multi-anchor piles", Soil Dynam. Earthq. Eng., 145, 106737. https://doi.org/10.1016/j.soildyn.2021.106737
  24. Fang Pai, L., Gang Wu, H., Guan, W., Wei, H. and Tang, L. (2022), "Shaking table test for seismic optimization of soil slope reinforced by new EPS pile under earthquake", Soil Dynam. Earthq. Eng., 154, 107140. https://doi.org/10.1016/j.soildyn.2021.107140.
  25. Fukumoto, Y. (1972), "Study on the behaviour of stabilization piles for land-slides", Soils Found., 12(2), 61-73. https://doi.org/10.3208/sandf1972.12.61
  26. Fukumoto, Y. (1976), "The behaviour of piles for preventing landslide", Soils Found., 16(2), 91-103. https://doi.org/10.3208/sandf1972.16.2_91
  27. Fukumoto, Y. (1975), "Experiment study on the behavior of lateral resistance of piles against a land-sliding.(1)", Landslides, 12(1), 20-24. https://doi.org/10.3313/jls1964.12.20.
  28. Fukuoka, M. (1977), "The effects of horizontal loads on piles due to landslides", Proceedings of the 10th Spec. Session, 9th Int. Conf. on SMFE.
  29. Gao, Y.F., Zhang, F., Lei, G.H. and Li, D.Y. (2013), "An extended limit analysis of three-dimensional slope stability", Geotechnique, 63(6), 518-524. https://doi.org/10.1680/geot.12.T.004.
  30. Ge, D.M., Zhao, L.C. and Esmaeili-Falak, M. (2022), "Estimation of rapid chloride permeability of SCC using hyperparameters optimized random forest models", J. Sustain. Cement-Based Mater., 1-19. https://doi.org/10.1080/21650373.2022.2093291.
  31. Goh, A.T.C., Teh, C.I. and Wong, K.S. (1997), "Analysis of piles subjected to embankment induced lateral soil movements", J. Geotech. Geoenviron. Eng., 123(9), 792-801. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:9(792).
  32. Griffiths, D.V. and Lane, P.A. (2001), "Slope stability analysis by finite elements", Geotechniq. London, 51(7), 653-654. https://doi.org/10.1680/geot.2001.51.7.653
  33. Hajiazizi, M., Bavali, M. and Fakhimi, A. (2018), "Numerical and experimental study of the optimal location of concrete piles in a saturated sandy slope", Int. J. Civil Eng., 16(10), 1293-1301. https://doi.org/10.1007/s40999-017-0155-1
  34. Hajiazizi, M., Nasiri, M. and Mazaheri, A.R. (2017), "The effect of fixed piles tip on stabilization of earth slopes", Scientia Iranica, 25(5), 2550-2560. https://doi.org/10.24200/sci.2017.4211.
  35. Hassiotis, S., Chameau, J.L. and Gunaratne, M. (1997), "Design method for stabilization of slopes with piles", J. Geotech. Geoenviron. Eng., 123(4), 314-323. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:4(314).
  36. Hull, T.S., Lee, C.Y. andPoulos, H.G. (1991), Mechanics of pile reinforcement for unstable slopes, University of Sydney, School of Civil and Mining Engineering.
  37. Itasca Consulting Group, I. (20125), FLAC3D, Fast Lagrangian Analysis of Continue in 3Dimensions.
  38. Ito, T. and Matsui, T. (1975), "Methods to estimate lateral force acting on stabilizing piles", Soils Found., 15(4), 43-59. https://doi.org/10.3208/sandf1972.15.4_43.
  39. Jeong, S., Kim, B., Won, J. and Lee, J. (2003), "Uncoupled analysis of stabilizing piles in weathered slopes", Comput. Geotech., 30(8), 671-682. https://doi.org/10.1016/j.compgeo.2003.07.002.
  40. Jiang, J., Zhao, Q., Jiang, H., Wu, Y. and Zheng, X. (2022), "Stability evaluation of finite soil slope in front of piles in landslide with displacement-based method", Landslides, 19(11), 2653-2669. https://doi.org/10.1007/s10346-022-01924-5
  41. Kourkoulis, R., Gelagoti, F., Anastasopoulos, I. and Gazetas, G. (2011), "Slope stabilizing piles and pile-groups: Parametric study and design insights", J. Geotech. Geoenviron. Eng., 137(7), 663-677. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000479.
  42. Lei, H., Liu, X., Song, Y. and Xu, Y. (2021), "Stability analysis of slope reinforced by double-row stabilizing piles with different locations", Nat. Hazards, 106(1), 19-42. https://doi.org/10.1007/s11069-020-04446-2. 
  43. Li, Z. and Xiao, S. (2022), "Seismic stability analysis of two-stage slopes reinforced with one row of piles", Soil Dynam. Earthq. Eng., 153, 107079. https://doi.org/10.1016/j.soildyn.2021.107079.
  44. Matsui, T. andSan, K.C. (1992), "Finite element slope stability analysis by shear strength reduction technique", Soils Found., 32(1), 59-70. https://doi.org/10.3208/sandf1972.32.59.
  45. Mohapatra, S.R., Rajagopal, K. and Sharma, J. (2016), "Direct shear tests on geosynthetic-encased granular columns", Geotext. Geomembranes, 44(3), 396-405. https://doi.org/10.1016/j.geotexmem.2016.01.002.
  46. Moradi, G., Hassankhani, E. and Halabian, A.M. (2022), "Experimental and numerical analyses of buried box culverts in trenches using geofoam", Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 175(3), 311-322. https://doi.org/10.1680/jgeen.19.00288
  47. Naylor, D.J. (1982), "Finite elements and slope stability", Numerical Method. Geomech., 229-244. https://doi.org/10.1007/978-94-009-7895-9_10
  48. Oakland, M.W. and Chameau, J.A. (1984), "Finite-element analysis of drilled piers used for slope stabilization", In Laterally loaded deep foundations: Analysis and performance. ASTM International.
  49. Peng, W., Zhao, M., Zhao, H. and Yang, C. (2022), "Seismic stability of the slope containing a laterally loaded pile by finite-element limit analysis", Int. J. Geomech., 22(1), 06021033. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002226.
  50. Polysou, N.C., Coulter, T.S. and Sobkowicz, J.C. (1998), "Design, construction and performance of a pile wall stabilizing a landslide", Proceedings of the 51th Can Geotech Conference.
  51. Poorjafar, A., Esmaeili-Falak, M. andKatebi, H. (2021), "Pile-soil interaction determined by laterally loaded fixed head pile group", Geomech. Eng., 26(1), 13-25. https://doi.org/10.12989/gae.2021.26.1.013.
  52. Poulos, H.G. and Chen, L.T. (1997), "Pile response due to excavation-induced lateral soil movement", J. Geotech. Geoenviron. Eng., 123(2), 94-99. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:2(94).
  53. Poulos, H.G. (1995), "Design of reinforcing piles to increase slope stability", Can. Geotech. J., 32(5), 808-818. https://doi.org/10.1139/t95-078.
  54. Reese, L.C. and Van Impe, W.F. (2000), Single piles and pile groups under lateral loading. CRC press.
  55. Sarkar, K., Singh, T.N. and Verma, A.K. (2012), "A numerical simulation of landslide-prone slope in Himalayan region-a case study", Arabian J. Geosci., 5(1), 73-81. https://doi.org/10.1007/s12517-010-0148-8.
  56. Sarkhani Benemaran, R., Esmaeili-Falak, M. and Katebi, H. (2021), "Physical and numerical modelling of pile-stabilised saturated layered slopes", Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 1-16. https://doi.org/10.1680/jgeen.20.00152.
  57. Sarkhani Benemaran, R., Esmaeili-Falak, M. and Javadi, A. (2022), "Predicting resilient modulus of flexible pavement foundation using extreme gradient boosting based optimised models", Int. J. Pavement Eng., 1-20. https://doi.org/10.1080/10298436.2022.2095385.
  58. Sharafi, H. and Sojoudi, Y. (2016), "Experimental and numerical study of pile-stabilized slopes under surface load conditions", Int. J. Civil Engi., 14(4), 221-232. https://doi.org/10.1007/s40999-016-0017-2.
  59. Shi, X., Yu, X. and Esmaeili-Falak, M. (2023), "Improved arithmetic optimization algorithm and its application to carbon fiber reinforced polymer-steel bond strength estimation", Compos. Struct., 306, 116599. https://doi.org/10.1016/j.compstruct.2022.116599.
  60. Shooshpasha, I. and Amirdehi, H.A. (2015), "Evaluating the stability of slope reinforced with one row of free head piles", Arabian J. Geosci., 8(4), 2131-2141. https://doi.org/10.1007/s12517-014-1272-7.
  61. Singh, T.N., Pradhan, S.P. and Vishal, V. (2013), "Stability of slopes in a fire-prone mine in Jharia Coalfield, India", Arabian J. Geosci., 6(2), 419-427. https://doi.org/10.1007/s12517-011-0341-4.
  62. Sun, S.W., Wang, W. and Zhao, F. (2014), "Three-dimensional stability analysis of a homogeneous slope reinforced with micropiles", Math. Probl. Eng., 1-11. https://doi.org/10.1155/2014/864017.
  63. Tschebotarioff, G. (1973). Foundations, retaining and earth structures-the art of design and construction and its scientific bases in soil mechanics.
  64. Ugai, K. and Leshchinsky, D. (1995), "Three-dimensional limit equilibrium and finite element analyses: A comparison of results", Soils Found., 35(4), 1-7. https://doi.org/10.3208/sandf.35.4_1.
  65. Viggiani, C. (1981), "Ultimate lateral load on piles used to stabilize landslides", Proceedings of the 10th Int. Conf. on SMFE.
  66. Wang, Y., Smith, J.V. and Nazem, M. (2021), "Optimisation of a slope-stabilisation system combining gabion-faced geogrid-reinforced retaining wall with embedded piles", KSCE J. Civil Eng., 25(12), 4535-4551. https://doi.org/10.1007/s12205-021-1300-6.
  67. Wei, W.B. and Cheng, Y.M. (2009), "Strength reduction analysis for slope reinforced with one row of piles", Comput. Geotech., 36(7), 1176-1185. https://doi.org/10.1016/j.compgeo.2009.05.004.
  68. Wei, W.B., Cheng, Y.M. and Li, L. (2009), "Three-dimensional slope failure analysis by the strength reduction and limit equilibrium methods", Comput. Geotech., 36(1-2), 70-80. https://doi.org/10.1016/j.compgeo.2008.03.003.
  69. Won, J., You, K., Jeong, S. and Kim, S. (2005), "Coupled effects in stability analysis of pile-slope systems", Comput.Geotech., 32(4), 304-315. https://doi.org/10.1016/j.compgeo.2005.02.006.
  70. Xu, C., Xue, L., Cui, Y., Guo, S., Zhai, M., Bu, F. and Chen, M.T. (2022), "A new multi-objective comprehensive optimization model for homogeneous slope reinforced by anti-slide piles: Insights from numerical simulation", Lithosphere, 2022(1). https://doi.org/10.2113/2022/6499724.
  71. Yamin, M. (2007), Landslide stabilization using a single row of rock-socketed drilled shafts and analysis of laterally loaded drilled shafts using shaft deflection data. University of Akron.
  72. Yang, S., Ren, X. and Zhang, J. (2011), "Study on embedded length of piles for slope reinforced with one row of piles", J. Rock Mech. Geotech. Eng., 3(2), 167-178. https://doi.org/10.3724/SP.J.1235.2011.00167.
  73. Zeinkiewicz, O., Humpheson, C. and Lewis, R. (1975), "Associated and non-associated visco-plasticity in soils mechanics", J. Geotech., 25(5), 671-689. https://doi.org/10.1680/geot.1975.25.4.671
  74. Zeng, S. and Liang, R. (2002), "Stability analysis of drilled shafts reinforced slope", Soils Found., 42(2), 93-102. https://doi.org/10.3208/sandf.42.2_93.
  75. Zienkiewicz, O.C., Humpheson, C. and Lewis, R.W. (1975), "Associated and non-associated visco-plasticity and plasticity in soil mechanics", Geotechnique, 25(4), 671-689. https://doi.org/10.1680/geot.1975.25.4.671