Acknowledgement
This study has been supported by FEN-BAP-A-150219-27 coded scientific research project of Giresun University. The author expresses sincere thanks for the support by the Giresun University Scientific Research Projects Coordination Unit.
References
- ASTM International (2010), "ASTM D4318-10: Standard test methods for liquid limit, plastic limit, and plasticity index of soils", 2010 Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.
- Augustesen, A., Liingaard, M. and Lade, P.V. (2004), "Evaluation of time-dependent behavior of soils", Int. J. Geomech., 4(3), 137-156. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:3(137).
- Azarafza, M., Nanehkaran, Y.A., Akgun, H. and Mao, Y. (2021), "Application of an image processing-based algorithm for riverside granular sediment gradation distribution analysis", Adv. Mater. Res., 10(3), 229-244. https://doi.org/10.12989/amr.2021.10.3.229.
- Bagheri, M., Rezania, M. and Nezhad, M.M. (2019), "Rate dependency and stress relaxation of unsaturated clays", Int. J. Geomech., 19(12), 04019128. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001507.
- Bock, R.G., Puri, V.M. and Manbeck, H.B. (1991), "Triaxial test sample size effect on stress relaxation of wheat en masse", Trans. ASAE, 34(3), 0966-0971. https://doi.org/10.13031/2013.31757.
- Chegenizadeh, A., Keramatikerman, M. and Nikraz, H. (2020), "Effect of loading strain rate on creep and stress-relaxation characteristics of sandy silt", Result. Eng., 7, 100143. https://doi.org/10.1016/j.rineng.2020.100143.
- Dijkstra, J., Ando, E. and Dano, C. (2019), "Grain kinematics during stress relaxation in sand: not a problem for X-ray imaging", E3S Web of Conferences, 92, 01001. https://doi.org/10.1051/e3sconf/20199201001.
- Dob, H., Messast, S., Boulon, M. and Flavigny, E. (2016), "Treatment of the high number of cycles as a pseudo-cyclic creep by analogy with the soft soil creep model", Geotech. Geol. Eng., 34, 1985-1993. https://doi.org/10.1007/s10706-016-0078-7.
- Hanley, K.J., O'Sullivan, C., Wadee, M.A. and Huang, X. (2015), "Use of elastic stability analysis to explain the stress-dependent nature of soil strength", R. Soc. Open Sci., 2(4), 150038. https://doi.org/10.1098/rsos.150038.
- Jun, S.H., Lee, J.H., Park, B.S. and Kwon, H.J. (2021), "Design charts for consolidation settlement of marine clays using finite strain consolidation theory", Geomech. Eng., 24(3), 295-305. https://doi.org/10.12989/gae.2021.24.3.295.
- Kamao, S. (2016), "Creep And Relaxation Behavior of Highly Organic Soil", Int. J. Geomate, 11(25), 2506-2511. https://doi.org/10.21660/2016.25.5301.
- Komurlu, E. (2021). "An experimental study on stress relaxation of a silt type soil", Yerbilimleri, 42, 70-84. https://doi.org/10.17824/yerbilimleri.774533.
- Komurlu, E. and Celik, A.G. (2022). "An experimental study on stress relaxation behaviour of cement stabilized sands", J. Geoeng., 17, 189-194. https://doi.org/10.6310/jog.202212_17(4).2.
- Komurlu, E. and Kesimal, A. (2015a). "Experimental study on sulfide-rich mine tailings usage for short-term support purpose", Geomech. Eng., 9(2), 195-205. https://doi.org/10.12989/gae.2015.9.2.195.
- Komurlu, E. and Kesimal, A. (2015b). "Experimental study of polyurethane foam reinforced soil used as a rock-like material", J. Rock. Mech. Geotech. Eng., 7(5), 566-572. https://doi.org/10.1016/j.jrmge.2015.05.004.
- Kutergin, V.N., Kal'bergenov, R.G., Karpenko, F.S., Leonov, A.R. and Merzlyakov, V.P. (2013), "Determination of rheological properties of clayey soils by the relaxation method", Soil. Mech. Found. Eng., 50, 1-6. https://doi.org/10.1007/s11204-013-9201-4.
- Kwok, C.Y. and Bolton, M.D. (2013), "DEM simulations of soil creep due to particle crushing", Geotechnique, 63(16), 1365-1376. https://doi.org/10.1680/geot.11.P.089.
- Lade, P.V. and Karimpour, H. (2016), "Stress drop effects in time dependent behavior of quartz sand", Int. J. Solids Struct., 87(1), 167-182. https://doi.org/10.1016/j.ijsolstr.2016.02.015.
- Lade, P.V. and Karimpour, H., (2015), "Stress relaxation behavior in Virginia Beach sand", Can. Geotech. J., 52(7), 813-835. https://doi.org/10.1139/cgj-2013-0463.
- Lade, P.V., Nam, J. and Liggio, C.D.J. (2010), "Effects of particle crushing in stress drop-relaxation experiments on crushed coral sand", J. Geotech. Geoenviron., 136(3), 500-509. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000212.
- Levin, F., Vogt, S. and Cudmani, R. (2019), "Time-dependent behaviour of sand with different fine contents under oedometric loading", Can. Geotech. J., 56(1), 102-115. https://doi.org/10.1139/cgj-2017-0565.
- Li, G., Ni, C., Pei, H., Wan-ming, G. and Ng, C.W.W. (2013), "Stress relaxation of grouted entirely large diameter B-GFRP soil nail", China Ocean Eng., 27, 495-508. https://doi.org/10.1007/s13344-013-0042-8.
- Liingaard, M., Augustesen, A. and Lade, P.V. (2004), "Characterization of Models for Time-Dependent Behavior of Soils", Int. J. Geomech., 4(3), 157-177. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:3(157).
- Miksic, A. and Alava, M.C. (2013), "Evolution of grain contacts in a granular sample under creep and stress relaxation", Phys. Rev. E., 88, 032207. https://doi.org/10.1103/PhysRevE.88.032207.
- Paul, M., Bakshi, K. and Sahu, R.B. (2021), "An analytical model for radial consolidation prediction under cyclic loading", Geomech. Eng., 26(4), 333-343. https://doi.org/10.12989/gae.2021.26.4.333.
- Sabir, M.A., Umar, M., Farooq, M. and Faridullah, F. (2016), "Computing soil creep velocity using dendrochronology", Bull. Eng. Geol. Environ., 75, 1761-1768. https://doi.org/10.1007/s10064-015-0838-2.
- Sanchez-Giron, V., Andreu, E. and Hernanz, J.L. (2001), "Stress relaxation of five different soil samples when uniaxially compacted at different water contents", Soil Till. Res., 62(3-4), 85-99. https://doi.org/10.1016/S0167-1987(01)00213-6.
- Sheahan, T., Ladd, C. and Germaine, J. (1994), "Time-dependent triaxial relaxation behavior of a resedimented clay", Geotech. Test. J., 17(4), 444-452. https://doi.org/10.1520/GTJ10305J.
- Staszewska, K. and Cudny, M. (2020), "Modelling the time-dependent behaviour of soft soils", Stud. Geotech. Mech., 42(2), 97-110. https://doi.org/10.2478/sgem-2019-0034.
- Thomas, G. and Rangaswamy, K. (2020) "Strengthening of cement blended soft clay with nano-silica particles", Geomech. Eng., 20(6), 505-516. https://doi.org/10.12989/gae.2020.20.6.505.
- Tong, F. and Yin, J.H. (2013), "Experimental and constitutive modeling of relaxation behaviors of three clayey soils", J. Geotech. Geoenviron., 139(11), 1973-1981. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000926.
- Tran, T.T.T., Hazarika. H., Indrawan, I.G.B. and Karnawati, D. (2018), "Prediction of time to soil failure based on creep strength reduction approach", Geotech. Geol. Eng., 36, 2749-2760. https://doi.org/10.1007/s10706-018-0496-9.
- Wang, J. and Xia, Z. (2021) "DEM study of creep and stress relaxation behaviors of dense sand", Comput. Geotech., 134, 104142. https://doi.org/10.1016/j.compgeo.2021.104142.
- Wang, S., Zhan, Q., Wang, L., Guo, F., Liu, T. and Pan, Y. (2021), "Unsaturated creep behaviors and creep model of slip‑surface soil of a landslide in Three Gorges Reservoir area, China", Bull. Eng. Geol. Environ., 80, 5423-5435. https://doi.org/10.1007/s10064-021-02303-5.
- Wang, Y.F., Zhou, Z.G. and Cai, Z.Y. (2014), "Studies about creep characteristic of silty clay on triaxial drained creep test", Appl. Mech. Mater., 580-583, 355-358. https://doi.org/10.4028/www.scientific.net/amm.580-583.355.
- Xin, Z.H., Moon, J.H., Kim, L.S., Kim K.B. and Kim, Y.U. (2019), "Effect of arbitrarily manipulated gap-graded granular particles on reinforcing foundation soil", Geomech. Eng., 17(5), 439-444. https://doi.org/10.12989/gae.2019.17.5.439.
- Xu, M., Hong, J. and Song, E. (2018), "DEM study on the macro- and micro-responses of granular materials subjected to creep and stress relaxation", Comput. Geotech., 102, 111-124. https://doi.org/10.1016/j.compgeo.2018.06.009
- Yin, Z.Y., Zhu, Q.Y., Yin, J.H. and Ni, Q. (2014), "Stress relaxation coefficient and formulation for soft soils", Geotech. Lett., 4(1), 45-51. https://doi.org/10.1680/geolett.13.00070.
- Zhou, C., Xu, C., Karakus, M. and Shen, J. (2018), "A systematic approach to the calibration of micro-parameters for the flat-jointed bonded particle model", Geomech. Eng., 16(5), 471-482. https://doi.org/10.12989/gae.2018.16.5.471.