DOI QR코드

DOI QR Code

Enhanced distributed secondary control method for DC microgrids against heterogeneous communication time delays

  • Received : 2022.05.22
  • Accepted : 2022.11.02
  • Published : 2023.01.20

Abstract

Accurate power sharing in a DC microgrid with a conventional distributed control scheme is impossible to achieve due to the heterogeneity of communication time delays. To address this problem, an anti-heterogeneous time delay estimator is proposed on the basis of scattering transformation and a PI consensus algorithm, and proper power allocation is achieved along with voltage compensation in a distributed fashion. In the proposed estimator, transmitted/received signals are modified via scattering transformation, and average consensus is estimated by the PI consensus algorithm. Consequently, proportional power sharing and voltage compensation are achieved concomitantly despite heterogeneous temporal delays, mismatched line resistances, and load variation. The effectiveness of the proposed method is evaluated through experiments.

Keywords

Acknowledgement

This work was supported by the NRF of Korea Grant under Grant NRF- 2018R1D1A1A09081779. This work was supported by the Ministry of SMEs and Startups of the Republic of Korea. (No. S3207312).

References

  1. Nguyen, D.-L., Lee, H.-H.: A survey on cooperative control strategies for DC microgrids. Neurocomputing (2021). https://doi.org/10.1016/j.neucom.2021.11.036 
  2. Li, Z., Cheng, Z., Si, J., Li, S.: Distributed event-triggered secondary control for average bus voltage regulation and proportional load sharing of DC microgrid. J. Mod. Power Syst. Clean Energy (2021). https://doi.org/10.35833/MPCE.2020.000780 
  3. Han, R., Meng, L., Guerrero, J.M., Vasquez, J.C.: Distributed nonlinear control with event-triggered communication to achieve current-sharing and voltage regulation in DC microgrids. IEEE Trans. Power Electron. 33, 6416-6433 (2018)  https://doi.org/10.1109/tpel.2017.2749518
  4. Dong, M., Li, L., Nie, Y., Song, D., Yang, J.: Stability analysis of a novel distributed secondary control considering communication delay in DC microgrids. IEEE Trans. Smart Grid 10(6), 6690-6700 (2019)  https://doi.org/10.1109/tsg.2019.2910190
  5. Han, R., Meng, L., Guerrero, J.M., Vasquez, J.C.: Distributed nonlinear control with event-triggered communication to achieve current-sharing and voltage regulation in DC microgrids. IEEE Trans. Power Electron. 33(7), 6416-6433 (2018)  https://doi.org/10.1109/tpel.2017.2749518
  6. Guo, F., Xu, Q., Wen, C., Wang, L., Wang, P.: Distributed secondary control for power allocation and voltage restoration in islanded DC microgrids. IEEE Trans. Sustain. Energy 9(4), 1857-1869 (2018)  https://doi.org/10.1109/tste.2018.2816944
  7. Fang, J., Shuai, Z., Zhang, X., Shen, X., Shen, Z.J.: Secondary power sharing regulation strategy for a DC microgrid via maximum loading factor. IEEE Trans. Power Electron. 34(12), 11856-11867 (2019)  https://doi.org/10.1109/tpel.2019.2907551
  8. Hoang, K.D., Lee, H.H.: Accurate power sharing with balanced battery state of charge in distributed DC microgrid. IEEE Trans. Ind. Electron. 66, 1883-1893 (2019)  https://doi.org/10.1109/tie.2018.2838107
  9. Sahoo, S., Mishra, S.: A distributed finite-time secondary average voltage regulation and current sharing controller for DC micro-grids. IEEE Trans. Smart Grid 10(1), 282-292 (2019)  https://doi.org/10.1109/TSG.2017.2737938
  10. Shyam, A.B., Anand, S., Sahoo, S.R.: Effect of communication delay on consensus based secondary controllers in DC microgrid. IEEE Trans. Ind. Electron. 68, 1 (2020) 
  11. Deng, C., Guo, F., Wen, C., Yue, D., Wang, Y.: Distributed resilient secondary control for DC microgrids against heterogeneous communication delays and DoS attacks. IEEE Trans. Ind. Electron. 69, 1 (2021) 
  12. Zhou, J., Shi, M., Chen, X., Chen, Y., Wen, J., He, H.: A cascaded distributed control framework in DC microgrids. IEEE Trans. Smart Grid 12(1), 205-214 (2021)  https://doi.org/10.1109/TSG.2020.3020364
  13. Nguyen, D.-L., Lee, H.-H.: Accurate power sharing and voltage restoration in DC microgrids with heterogeneous communication time delays. IEEE Trans. Power Electron. 37, 1 (2022) 
  14. Meng, L., Dragicevic, T., Roldan-Perez, J., Vasquez, J.C., Guerrero, J.M.: Modeling and sensitivity study of consensus algorithm-based distributed hierarchical control for DC microgrids. IEEE Trans. Smart Grid (2016). https://doi.org/10.1109/TSG.2015.2422714 
  15. Silva, W.W.A.G., Oliveira, T.R., Donoso-Garcia, P.F.: An improved voltage-shifting strategy to attain concomitant accurate power sharing and voltage restoration in droop-controlled DC microgrids. IEEE Trans. Power Electron. 36(2), 2396-2406 (2021)  https://doi.org/10.1109/tpel.2020.3009619
  16. Nasirian, V., Moayedi, S., Davoudi, A., Lewis, F.L.: Distributed cooperative control of DC microgrids. IEEE Trans. Power Electron. 30(4), 2288-2303 (2015)  https://doi.org/10.1109/TPEL.2014.2324579
  17. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Contr. 49(9), 1520-1533 (2004)  https://doi.org/10.1109/TAC.2004.834113
  18. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215-233 (2007)  https://doi.org/10.1109/JPROC.2006.887293
  19. Freeman, R. A., Yang, P., Lynch, K. M.: Stability and convergence properties of dynamic average consensus estimators. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 338-343 (2006) 
  20. Chopra, N., Spong, M. W.: Output synchronization of nonlinear systems with time delay in communication. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 4986-4992 (2006) 
  21. Lu, J., Zhang, X., Zhang, B., Hou, X., Wang, P.: Distributed dynamic event-triggered control for voltage restoration and current sharing in DC microgrids. IEEE Trans. Sustain. Energy 13(1), 619-628 (2022)  https://doi.org/10.1109/TSTE.2021.3123372
  22. Yi, X., Liu, K., Dimarogonas, D.V., Johansson, K.H.: Dynamic event-triggered and self-triggered control for multi-agent systems. IEEE Trans. Autom. Contr. 64(8), 3300-3307 (2019)  https://doi.org/10.1109/tac.2018.2874703
  23. Dimarogonas, D.V., Frazzoli, E., Johansson, K.H.: Distributed event-triggered control for multi-agent systems. IEEE Trans. Automat. Contr. 57(5), 1291-1297 (2012) https://doi.org/10.1109/TAC.2011.2174666