DOI QR코드

DOI QR Code

Power fow decoupling method of triple-active-bridge converter for islanding mode operation in DC microgrid systems

  • Kwabena Opoku Bempah (Nanointech Research and Development Center) ;
  • Kyung‑Wook Heo (Department of Electrical Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Jee‑Hoon Jung (Department of Electrical Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • Received : 2022.03.25
  • Accepted : 2022.09.15
  • Published : 2023.01.20

Abstract

A single multiwinding transformer-based triple-active-bridge (TAB) converter with high power density is a viable candidate for DC microgrid development. However, it comes with a power fow challenge where all the ports are coupled. A power fow decoupling method is proposed for applications of the TAB converter in this paper. The method uses a combination of Proportional Integral (PI) controllers and a lookup table (LUT) that stores decoupling matrices for dynamic decoupling. The proposed decoupling method considers port voltage variations and utilizes only two control variables for voltage regulation. It is designed for application in the islanding mode operation of DC microgrids for DC bus voltage regulation. The feasibility and efectiveness of the proposed power fow decoupling method are verifed by simulations and experimental results using an implemented 2 kW TAB converter prototype. Finally, the proposed method shows a 98.95 and a 99.00% improvement in power decoupling according to load variations in the load port.

Keywords

Acknowledgement

This work was supported by the Energy Efciency and Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) Grant through the Korea Government Ministry of Knowledge Economy under Grant (No. 20192010106750).

References

  1. M. Mobarrez, D. Fregosi, Gh. Jalali, S. Bhattacharya, and M.A. Bahmani, "A novel control method for preventing the PV and load fuctuations in a DC microgrid from transferring to the AC power grid", DC Microgrids (ICDCM), In: 2017 IEEE Second International Conference, Germany (2017)
  2. Deshmukh, R.R., Ballal, M.S.: Integrated control scheme for dynamic power management with improved voltage regulation in DC microgrid. J. Power Electron. 20(6), 1550-1561 (2020) https://doi.org/10.1007/s43236-020-00152-1
  3. Han, M., Liu, X., Pu, H., et al.: Real-time online optimal control of current-fed dual active bridges based on machine learning. J. Power Electron. 20, 43-52 (2020). https://doi.org/10.1007/s43236-019-00013-6
  4. Tomar, A., Gaur, P., Kandari, R., Gupta, N.: Control of standalone microgrid. Elsevier Science et Technology, Amsterdam (2021)
  5. Sim, J., Lee, J.Y., Jung, J.H.: Isolated three-port DC-DC converter employing ESS to obtain voltage balancing capability for bipolar LVDC distribution system. J. Power Electron. 20, 802-810 (2020). https://doi.org/10.1007/s43236-02000065-z
  6. Liu, D., Zhu, J., Zhang, H.L., Cai, G.: A bidirectional dual buckboost voltage balancer with direct coupling based on a burst-mode control scheme for low-voltage bipolar-type DC microgrids. Journal of Power Electronics 15(6), 1609-1618 (2015). https://doi.org/10.6113/JPE.2015.15.6.1609
  7. Sim, J., Lee, J., Choi, H., Jung, J.-H.: High power density bidirectional three-port DC-DC converter for battery applications in DC microgrids. Int. Conf. Power Electron. and ECCE Asia (2019). https://doi.org/10.23919/ICPE2019ECCEAsia42246.2019.8797043
  8. Liu, R.: A novel decoupled TAB converter with energy storage system for HVDC power system in more electric aircraft. J. Eng. (2018). https://doi.org/10.1049/joe.2018.0033
  9. Wang, P., Lu, X., Wang, W., Xu, D.: Hardware decoupling and autonomous control of series-resonance-based three-port converters in DC microgrids. IEEE Transact. Ind. Appl. 55(4), 3901- 3914 (2019). https://doi.org/10.1109/TIA.2019.2906112
  10. Zhao, C., Round, S.D., Kolar, J.W.: An isolated three-port bidirectional DC-DC converter with decoupled power fow management. IEEE Trans. Power Electron. 23(5), 2443-2453 (2008). https://doi.org/10.1109/TPEL.2008.2002056
  11. Wang, L., Wang, Z., Li, H.: Asymmetrical duty cycle control and decoupled power fow design of a three-port bidirectional DC-DC converter for fuel cell vehicle application. IEEE Trans. Power Electron. 27(2), 891-904 (2012). https://doi.org/10.1109/TPEL.011.2160405
  12. Bisis, I., Kastha, D., Bajpai, P.: Small signal modeling and decoupled controller design for a triple active bridge multiport DC-DC converter. IEEE Trans. Power Electron. 36(2), 1856-1869 (2021). https://doi.org/10.1109/TPEL.2020.3006782
  13. Zhi, N., Zhang, H., Xiao, X.: Switching system stability analysis of DC microgrids with DBS control. IEEE Appl. Power Electron. Conf. Expo. 2016, 3338-3345 (2016). https://doi.org/10.1109/APEC.2016.7468346
  14. Wu, T., Kuo, C., Lin, L., Chen, Y.: DC-bus voltage regulation for a DC distribution system with a single-phase bidirectional inverter. IEEE J. Emerg. Sel. Top. Power Electron. 4(1), 210-220 (2016). https://doi.org/10.1109/JESTPE.2015.2485300
  15. Michon, M., Duarte, J.L., Hendrix, M., Simoes, M.G.: A threeport bi-directional converter for hybrid fuel cell systems. IEEE Annu. Power Electron. Spec. Conf. 6, 4736-4742 (2004). https://doi.org/10.1109/PESC.2004.1354836