DOI QR코드

DOI QR Code

Master-slave modulated model predictive control to optimize current tracking for parallel cascaded H-bridge power supplies

  • Bichen Yan (School of Electrical Engineering and Automation, Hefei University of Technology) ;
  • Haihong Huang (School of Electrical Engineering and Automation, Hefei University of Technology) ;
  • Haixin Wang (School of Electrical Engineering and Automation, Hefei University of Technology)
  • Received : 2022.03.03
  • Accepted : 2022.08.15
  • Published : 2023.01.20

Abstract

Conventional distributed control has achieved a great deal of success in multi-parallel cascaded H-bridge (CHB) power supplies. However, conventional distributed controllers can have a seriously imbalanced output power due to a mismatch of the hardware or control parameters and form an unstable circulating current path between the CHB converters, which can lead to a couple of problems. (1) The stability and tracking performance of the branch current can become degraded. (2) The current-sharing reactor can be easily saturated. To optimize all the branch currents of multiple parallel CHB power supplies, a master-slave carrier-based model predictive control method is proposed in this paper. This control strategy can achieve an optimized current tracking performance and effective circulating current suppression. In addition, through carriers, H-bridge interleaving and branch synchronization can be easily achieved, which fixes the switching frequency. Thus, the advantages of model predictive control and interleaving can be combined. Based on the generalized branch current predictive model derived in this paper, when more than two paralleled CHB converters have different output powers, an optimized branch current response can be achieved and circulating current can be eliminated. Simulation and experimental results verify the effectiveness of the proposed method.

Keywords

References

  1. Huang, H.H., Ming, Y., Wang, H.X.: Application of a current and voltage mixed control mode for the new fast control power supply at EAST. Plasma Sci. Technol. 16(4), 420-423 (2014) https://doi.org/10.1088/1009-0630/16/4/22
  2. Zhang, Y., Yuan, X., Wu, X., Yuan, Y., Zhou, J.: Parallel implementation of model predictive control for multilevel cascaded H-bridge STATCOM with linear complexity. IEEE Trans. Ind. Electron. 67(2), 832-841 (2020) https://doi.org/10.1109/TIE.2019.2901647
  3. Gultekin, B., Ermis, M.: Cascaded multilevel converter-based transmission STATCOM: system design methodology and development of a 12 kV ±12 MVAr power stage. IEEE Trans. Power Electron. 28(11), 4930-4950 (2013) https://doi.org/10.1109/TPEL.2013.2238642
  4. Geng, H., Li, S., Zhang, C., Yang, G., Dong, L., Nahid-Mobarakeh, B.: Hybrid communication topology and protocol for distributed-controlled cascaded H-bridge multilevel STATCOM. IEEE Trans. Ind. Appl. 53(1), 576-584 (2017) https://doi.org/10.1109/TIA.2016.2614629
  5. Sahoo, S.K., Bhattacharya, T.: Phase-shifted carrier-based synchronized sinusoidal PWM techniques for a cascaded H-bridge multilevel inverter. IEEE Trans. Power Electron. 33(1), 513-524 (2018) https://doi.org/10.1109/TPEL.2017.2669084
  6. Townsend, C.D., Summers, T.J., Betz, R.E.: Phase-shifted carrier modulation techniques for cascaded H-bridge multilevel converters. IEEE Trans. Ind. Electron. 62(11), 6684-6696 (2015) https://doi.org/10.1109/TIE.2015.2442516
  7. Marquez, A., et al.: Variable-angle phase-shifted PWM for multilevel three-cell cascaded H-bridge converters. IEEE Trans. Ind. Electron. 64(5), 3619-3628 (2017) https://doi.org/10.1109/TIE.2017.2652406
  8. Wu, X., Xiong, C., Yang, S., Yang, H., Feng, X.: A Simplified space vector pulsewidth modulation scheme for three-phase cascaded H-bridge inverters. IEEE Trans. Power Electron. 35(4), 4192-4204 (2020) https://doi.org/10.1109/tpel.2019.2934821
  9. Jung, H.S., Yoo, J.M., Sul, S.K., Lee, H.J., Hong, C.: Parallel operation of inverters with isolated DC link for minimizing sharing inductor. IEEE Trans. Ind. Appl. 53(5), 4450-4459 (2017) https://doi.org/10.1109/TIA.2017.2695444
  10. Zhang, C., Du, S., Chen, Q.: A novel scheme suitable for high-voltage and large-capacity photovoltaic power stations. IEEE Trans. Ind. Electron. 60(9), 3775-3783 (2013) https://doi.org/10.1109/TIE.2012.2208438
  11. Hamza, D., Qiu, M., Jain, P.K.: Application and stability analysis of a novel digital active EMI flter used in a grid-tied PV microinverter module. IEEE Trans. Power Electron. 28(6), 2867-2874 (2013) https://doi.org/10.1109/TPEL.2012.2219074
  12. Zhang, X., Wang, T., Wang, X., Wang, G., Chen, Z., Xu, D.: A coordinate control strategy for circulating current suppression in multiparalleled three-phase inverters. IEEE Trans. Ind. Electron. 64(1), 838-847 (2017) https://doi.org/10.1109/TIE.2016.2578280
  13. Xueguang, Z., Wenjie, Z., Jiaming, C., Dianguo, X.: Deadbeat control strategy of circulating currents in parallel connection system of three-phase PWM converter. IEEE Trans. Energy Conv. 29(2), 406-417 (2014)
  14. Sun, K., Lin, X., Li, Y., Gao, Y., Zhang, L.: Improved modulation mechanism of parallel-operated T-type three-level PWM rectifers for neutral-point potential balancing and circulating current suppression. IEEE Trans. Power Electron. 33(9), 7466- 7479 (2018) https://doi.org/10.1109/tpel.2017.2772025
  15. Xing, X., Zhang, C., Chen, A., Geng, H., Qin, C.: Deadbeat control strategy for circulating current suppression in multiparalleled three-level inverters. IEEE Trans. Ind. Electron. 65(8), 6239-6249 (2018) https://doi.org/10.1109/tie.2017.2786234
  16. Bruske, S., Pugliese, S., Flacke, S., Liserre, M.: High-frequency grid current control of parallel inverters. In: IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society (2018)
  17. Jiang, C., Quan, Z., Zhou, D., Li, Y.: A centralized CB-MPC to suppress low-frequency ZSCC in modular parallel converters. IEEE Trans. Ind. Electron. 68(4), 2760-2771 (2021) https://doi.org/10.1109/TIE.2020.2982111
  18. Wang, X., et al.: A novel model predictive control strategy to eliminate zero-sequence circulating current in paralleled three-level inverters. IEEE J. Emerg. Select. Top. Power Electron. 7(1), 309-320 (2019) https://doi.org/10.1109/jestpe.2018.2879645
  19. Zhang, Y., Wu, X., Yuan, X.: A simplified branch and bound approach for model predictive control of multilevel cascaded H-bridge STATCOM. IEEE Trans. Ind. Electron. 64(10), 7634- 7644 (2017) https://doi.org/10.1109/TIE.2017.2698360
  20. Vazquez, S., et al.: Model predictive control: a review of its applications in power electronics. IEEE Ind. Electron. Mag. 8(1), 16-31 (2014) https://doi.org/10.1109/MIE.2013.2290138
  21. Kouro, S., Perez, M.A., Rodriguez, J., Llor, A.M., Young, H.A.: Model predictive control: MPC's role in the evolution of power electronics. IEEE Ind. Electron. Mag. 9(4), 8-21 (2015) https://doi.org/10.1109/MIE.2015.2478920
  22. Bordons, C., Montero, C.: Basic principles of MPC for power converters: bridging the gap between theory and practice. IEEE Ind. Electron. Mag. 9(3), 31-43 (2015) https://doi.org/10.1109/MIE.2014.2356600
  23. Mahmoudi, H., Aleenejad, M., Ahmadi, R.: Modulated model predictive control of modular multilevel converters in VSC-HVDC systems. IEEE Trans. Power Del. 33(5), 2115-2124 (2018) https://doi.org/10.1109/tpwrd.2017.2727478
  24. Ma, F., He, Z., Xu, Q., Luo, A., Zhou, L., Li, M.: Multilevel power conditioner and its model predictive control for railway traction system. IEEE Trans. Ind. Electron. 63(11), 7275-7285 (2016) https://doi.org/10.1109/TIE.2016.2563379
  25. Tarisciotti, L., Zanchetta, P., Watson, A., Bifaretti, S., Clare, J.C.: Modulated model predictive control for a seven-level cascaded h-bridge back-to-back converter. IEEE Trans. Ind. Electron. 61(10), 5375-5383 (2014) https://doi.org/10.1109/TIE.2014.2300056
  26. Llor, A.M., Solano, E.: Direct model-predictive control with variable commutation instant: application to a parallel multicell converter. IEEE Trans. Ind. Electron. 63(8), 5293-5300 (2016) https://doi.org/10.1109/TIE.2016.2561880
  27. Low, K., Cao, R.: Model predictive control of parallel-connected inverters for uninterruptible power supplies. IEEE Trans. Ind. Electron. 55(8), 2884-2893 (2008) https://doi.org/10.1109/TIE.2008.918474
  28. Zhou, D., Yang, S., Tang, Y.: Model predictive current control of modular multilevel converters with phase-shifted pulsewidth modulation. IEEE Trans. Ind. Electron. 66(6), 4368-4378 (2019) https://doi.org/10.1109/tie.2018.2863181
  29. Huang, H.H., Bi, N.X., Wang, H.X.: The analysis and experimental research of the second-generation EAST active feedback power supply. Fusion Eng. Des. 126, 174-179 (2018) https://doi.org/10.1016/j.fusengdes.2017.11.031
  30. Huang, H.H., Bi, N.X., Wang, H.X.: Exploration of the voltage control mode of second-generation EAST fast control power supply. IEEE Trans. Plasma Sci. 46(5), 1684-1688 (2018) https://doi.org/10.1109/tps.2017.2773620
  31. Souza, L.L.D., Rocha, N., Fernandes, D.A., Sousa, R.P.R.D., Jacobina, C.B.: Grid harmonic current correction based on parallel three-phase shunt active power filter. IEEE Trans. Power Electron. 37(2), 1422-1434 (2022)
  32. Wang, L., Zhao, T., He, J.: Centralized thermal stress oriented dispatch strategy for paralleled grid-connected inverters considering mission profiles. IEEE Open J. Power Electron. 2, 368-382 (2021) https://doi.org/10.1109/OJPEL.2021.3078416