References
- Huang, H.H., Ming, Y., Wang, H.X.: Application of a current and voltage mixed control mode for the new fast control power supply at EAST. Plasma Sci. Technol. 16(4), 420-423 (2014) https://doi.org/10.1088/1009-0630/16/4/22
- Zhang, Y., Yuan, X., Wu, X., Yuan, Y., Zhou, J.: Parallel implementation of model predictive control for multilevel cascaded H-bridge STATCOM with linear complexity. IEEE Trans. Ind. Electron. 67(2), 832-841 (2020) https://doi.org/10.1109/TIE.2019.2901647
- Gultekin, B., Ermis, M.: Cascaded multilevel converter-based transmission STATCOM: system design methodology and development of a 12 kV ±12 MVAr power stage. IEEE Trans. Power Electron. 28(11), 4930-4950 (2013) https://doi.org/10.1109/TPEL.2013.2238642
- Geng, H., Li, S., Zhang, C., Yang, G., Dong, L., Nahid-Mobarakeh, B.: Hybrid communication topology and protocol for distributed-controlled cascaded H-bridge multilevel STATCOM. IEEE Trans. Ind. Appl. 53(1), 576-584 (2017) https://doi.org/10.1109/TIA.2016.2614629
- Sahoo, S.K., Bhattacharya, T.: Phase-shifted carrier-based synchronized sinusoidal PWM techniques for a cascaded H-bridge multilevel inverter. IEEE Trans. Power Electron. 33(1), 513-524 (2018) https://doi.org/10.1109/TPEL.2017.2669084
- Townsend, C.D., Summers, T.J., Betz, R.E.: Phase-shifted carrier modulation techniques for cascaded H-bridge multilevel converters. IEEE Trans. Ind. Electron. 62(11), 6684-6696 (2015) https://doi.org/10.1109/TIE.2015.2442516
- Marquez, A., et al.: Variable-angle phase-shifted PWM for multilevel three-cell cascaded H-bridge converters. IEEE Trans. Ind. Electron. 64(5), 3619-3628 (2017) https://doi.org/10.1109/TIE.2017.2652406
- Wu, X., Xiong, C., Yang, S., Yang, H., Feng, X.: A Simplified space vector pulsewidth modulation scheme for three-phase cascaded H-bridge inverters. IEEE Trans. Power Electron. 35(4), 4192-4204 (2020) https://doi.org/10.1109/tpel.2019.2934821
- Jung, H.S., Yoo, J.M., Sul, S.K., Lee, H.J., Hong, C.: Parallel operation of inverters with isolated DC link for minimizing sharing inductor. IEEE Trans. Ind. Appl. 53(5), 4450-4459 (2017) https://doi.org/10.1109/TIA.2017.2695444
- Zhang, C., Du, S., Chen, Q.: A novel scheme suitable for high-voltage and large-capacity photovoltaic power stations. IEEE Trans. Ind. Electron. 60(9), 3775-3783 (2013) https://doi.org/10.1109/TIE.2012.2208438
- Hamza, D., Qiu, M., Jain, P.K.: Application and stability analysis of a novel digital active EMI flter used in a grid-tied PV microinverter module. IEEE Trans. Power Electron. 28(6), 2867-2874 (2013) https://doi.org/10.1109/TPEL.2012.2219074
- Zhang, X., Wang, T., Wang, X., Wang, G., Chen, Z., Xu, D.: A coordinate control strategy for circulating current suppression in multiparalleled three-phase inverters. IEEE Trans. Ind. Electron. 64(1), 838-847 (2017) https://doi.org/10.1109/TIE.2016.2578280
- Xueguang, Z., Wenjie, Z., Jiaming, C., Dianguo, X.: Deadbeat control strategy of circulating currents in parallel connection system of three-phase PWM converter. IEEE Trans. Energy Conv. 29(2), 406-417 (2014)
- Sun, K., Lin, X., Li, Y., Gao, Y., Zhang, L.: Improved modulation mechanism of parallel-operated T-type three-level PWM rectifers for neutral-point potential balancing and circulating current suppression. IEEE Trans. Power Electron. 33(9), 7466- 7479 (2018) https://doi.org/10.1109/tpel.2017.2772025
- Xing, X., Zhang, C., Chen, A., Geng, H., Qin, C.: Deadbeat control strategy for circulating current suppression in multiparalleled three-level inverters. IEEE Trans. Ind. Electron. 65(8), 6239-6249 (2018) https://doi.org/10.1109/tie.2017.2786234
- Bruske, S., Pugliese, S., Flacke, S., Liserre, M.: High-frequency grid current control of parallel inverters. In: IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society (2018)
- Jiang, C., Quan, Z., Zhou, D., Li, Y.: A centralized CB-MPC to suppress low-frequency ZSCC in modular parallel converters. IEEE Trans. Ind. Electron. 68(4), 2760-2771 (2021) https://doi.org/10.1109/TIE.2020.2982111
- Wang, X., et al.: A novel model predictive control strategy to eliminate zero-sequence circulating current in paralleled three-level inverters. IEEE J. Emerg. Select. Top. Power Electron. 7(1), 309-320 (2019) https://doi.org/10.1109/jestpe.2018.2879645
- Zhang, Y., Wu, X., Yuan, X.: A simplified branch and bound approach for model predictive control of multilevel cascaded H-bridge STATCOM. IEEE Trans. Ind. Electron. 64(10), 7634- 7644 (2017) https://doi.org/10.1109/TIE.2017.2698360
- Vazquez, S., et al.: Model predictive control: a review of its applications in power electronics. IEEE Ind. Electron. Mag. 8(1), 16-31 (2014) https://doi.org/10.1109/MIE.2013.2290138
- Kouro, S., Perez, M.A., Rodriguez, J., Llor, A.M., Young, H.A.: Model predictive control: MPC's role in the evolution of power electronics. IEEE Ind. Electron. Mag. 9(4), 8-21 (2015) https://doi.org/10.1109/MIE.2015.2478920
- Bordons, C., Montero, C.: Basic principles of MPC for power converters: bridging the gap between theory and practice. IEEE Ind. Electron. Mag. 9(3), 31-43 (2015) https://doi.org/10.1109/MIE.2014.2356600
- Mahmoudi, H., Aleenejad, M., Ahmadi, R.: Modulated model predictive control of modular multilevel converters in VSC-HVDC systems. IEEE Trans. Power Del. 33(5), 2115-2124 (2018) https://doi.org/10.1109/tpwrd.2017.2727478
- Ma, F., He, Z., Xu, Q., Luo, A., Zhou, L., Li, M.: Multilevel power conditioner and its model predictive control for railway traction system. IEEE Trans. Ind. Electron. 63(11), 7275-7285 (2016) https://doi.org/10.1109/TIE.2016.2563379
- Tarisciotti, L., Zanchetta, P., Watson, A., Bifaretti, S., Clare, J.C.: Modulated model predictive control for a seven-level cascaded h-bridge back-to-back converter. IEEE Trans. Ind. Electron. 61(10), 5375-5383 (2014) https://doi.org/10.1109/TIE.2014.2300056
- Llor, A.M., Solano, E.: Direct model-predictive control with variable commutation instant: application to a parallel multicell converter. IEEE Trans. Ind. Electron. 63(8), 5293-5300 (2016) https://doi.org/10.1109/TIE.2016.2561880
- Low, K., Cao, R.: Model predictive control of parallel-connected inverters for uninterruptible power supplies. IEEE Trans. Ind. Electron. 55(8), 2884-2893 (2008) https://doi.org/10.1109/TIE.2008.918474
- Zhou, D., Yang, S., Tang, Y.: Model predictive current control of modular multilevel converters with phase-shifted pulsewidth modulation. IEEE Trans. Ind. Electron. 66(6), 4368-4378 (2019) https://doi.org/10.1109/tie.2018.2863181
- Huang, H.H., Bi, N.X., Wang, H.X.: The analysis and experimental research of the second-generation EAST active feedback power supply. Fusion Eng. Des. 126, 174-179 (2018) https://doi.org/10.1016/j.fusengdes.2017.11.031
- Huang, H.H., Bi, N.X., Wang, H.X.: Exploration of the voltage control mode of second-generation EAST fast control power supply. IEEE Trans. Plasma Sci. 46(5), 1684-1688 (2018) https://doi.org/10.1109/tps.2017.2773620
- Souza, L.L.D., Rocha, N., Fernandes, D.A., Sousa, R.P.R.D., Jacobina, C.B.: Grid harmonic current correction based on parallel three-phase shunt active power filter. IEEE Trans. Power Electron. 37(2), 1422-1434 (2022)
- Wang, L., Zhao, T., He, J.: Centralized thermal stress oriented dispatch strategy for paralleled grid-connected inverters considering mission profiles. IEEE Open J. Power Electron. 2, 368-382 (2021) https://doi.org/10.1109/OJPEL.2021.3078416