References
- Larminie, J., Lowry, J.: Electric Vehicle Technology Explained: Second Edition. (2012). https://doi.org/10.1002/9781118361146
- Lukic, S.M., Cao, J., Bansal, R.C., Rodriguez, F., Emadi, A.: Energy storage systems for automotive applications. IEEE Trans. Ind. Electron. 55, 2258-2267 (2008). https://doi.org/10.1109/TIE.2008.918390
- Hart Danial, W.: Commonly Used Power and Converter Equations. McGraw Hill, New York (2010)
- Bellur, D.M., Kazimierczuk, M.K.: DC-DC converters for electric vehicle applications. In: 2007 Electr. Insul. Conf. Electr. Manuf. Expo, EEIC 2007, pp 286-293 (2007). https://doi.org/10.1109/EEIC.2007.4562633
- Ellis, M.W., Von Spakovsky, M.R., Nelson, D.J.: Fuel cell systems: efcient, fexible energy conversion for the 21st century. Proc. IEEE. 89, 1808-1817 (2001). https://doi.org/10.1109/5.975914
- Richardson, D.B.: Electric vehicles and the electric grid: a review of modeling approaches, impacts, and renewable energy integration. Renew. Sustain. Energy Rev. 19, 247-254 (2013). https://doi.org/10.1016/j.rser.2012.11.042
- Luthander, R., Shepero, M., Munkhammar, J., Widen, J.: Photovoltaics and opportunistic electric vehicle charging in the power system-a case study on a Swedish distribution grid. IET Renew. Power Gener. 13, 710-716 (2019). https://doi.org/10.1049/iet-rpg.2018.5082
- Amir, A., Amir, A., Che, H.S., Elkhateb, A., Rahim, N.A.: Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems. Renew. Energy. 136, 1147-1163 (2019). https://doi.org/10.1016/j.renene.2018.09.089
- Cardoso, V., Brockveld, S.L., Lazzarin, T.B., Waltrich, G.: Double boost-fyback converter. IET Power Electron. 13, 1163-1171 (2020). https://doi.org/10.1049/iet-pel.2019.1073
- Park, K.B., Moon, G.W., Youn, M.J.: High step-up boost converter integrated with voltage-doubler. In: 2010 IEEE Energy Convers. Congr. Expo. ECCE 2010-Proc., vol. 25, pp. 810-816 (2010). https://doi.org/10.1109/ECCE.2010.5617916
- Maheswari, L., Sivakumaran, N.: An isolated single-switch high step-up DC/DC converter with three-winding transformer for solar photovoltaic applications. Electr. Eng. 102, 1383-1392 (2020). https://doi.org/10.1007/s00202-020-00959-y
- Hu, X., Gao, B., Huang, Y., Chen, H.: Novel single switch DC-DC converter for high step-up conversion ratio. J. Power Electron. 18, 662-671 (2018). https://doi.org/10.6113/JPE.2018.18.3.662
- Subramanian, V., Manimaran, S.: Design of parallel-operated SEPIC converters using coupled inductor for load-sharing. J. Power Electron. 15, 327-337 (2015). https://doi.org/10.6113/JPE.2015.15.2.327
- Premkumar, M., Kumar, C., Anbarasan, A., Sowmya, R.: A novel non-isolated high step-up DC-DC boost converter using single switch for renewable energy systems. Electr. Eng. 102, 811-829 (2020). https://doi.org/10.1007/s00202-019-00904-8
- Ding, X., Zhao, D., Liu, Y., Li, K., Hao, Y.: High step-up threelevel DC-DC converter with three-winding coupled-inductor. J. Power Electron. 20, 53-64 (2020). https://doi.org/10.1007/s43236-019-00006-5
- Yang, L.S.: Novel dual DC-DC fyback converter with leakageenergy recycling. J. Power Electron. 18, 1007-1014 (2018). https://doi.org/10.6113/JPE.2018.18.4.1007
- Raja, R., Jagadeesan, A., Princelynjebakiruba, R., Navabalachandru, C.: An efcient high-step-up interleaved with a common active clamp DC-DC converter for electric vehicle. In: 2013 Int. Conf. Energy Efc. Technol. Sustain. ICEETS 2013, vol. 26, pp. 760-764 (2013). https://doi.org/10.1109/ICEETS.2013.6533480
- Luo, Q., Zhang, Y., Sun, P., Zhou, L.: An active clamp high step-up boost converter with a coupled inductor. J. Power Electron. 15, 86-95 (2014). https://doi.org/10.6113/JPE.2015.15.1.86
- Kokkonda, K., Kulkarni, P.S.: A high gain soft-switching activeclamped coupled-inductor-based converter for grid-tied photovoltaic applications. Electr. Eng. 103, 2783-2797 (2021). https://doi.org/10.1007/s00202-021-01250-4
- Tseng, K.C., Chen, J.Z., Lin, J.T., Huang, C.C., Yen, T.H.: High step-up interleaved forward-fyback boost converter with threewinding coupled inductors. IEEE Trans. Power Electron. 30, 4696-4703 (2015). https://doi.org/10.1109/TPEL.2014.2364292
- Leao e Silva Aquino, R.N.A., Tofoli, F.L., Praca, P.P., de Souza Oliveira, D., Barreto, L.H.S.C.: Soft switching high-voltage gain dc-dc interleaved boost converter. IET Power Electron. 8, 120-129 (2015). https://doi.org/10.1049/iet-pel.2014.0275
- Joseph, P.K., Devaraj, E.: Design of hybrid forward boost converter for renewable energy powered electric vehicle charging applications. IET Power Electron. 12, 2015-2021 (2019). https://doi.org/10.1049/iet-pel.2019.0151
- Tofoli, F.L., de Pereira, D.C., de Paula, W.J., de Oliveira Junior, D.S.: Survey on non-isolated high-voltage step-up DC-DC topologies based on the boost converter. IET Power Electron. 8, 2044-2057 (2015). https://doi.org/10.1049/iet-pel.2014.0605
- Axelrod, B., Berkovich, Y., Ioinovici, A.: Switched-capacitor/ switched-inductor structures for getting transformerless hybrid DC-DC PWM converters. IEEE Trans Circuits Syst. I Regul. Pap. 55, 687-696 (2008). https://doi.org/10.1109/TCSI.2008.916403
- Yang, L.S., Liang, T.J., Chen, J.F.: Transformerless DC-DC converters with high step-up voltage gain. IEEE Trans. Ind. Electron. 56, 3144-3152 (2009). https://doi.org/10.1109/TIE.2009.2022512
- Lakshmi, M., Hemamalini, S.: Nonisolated high gain DC-DC converter for DC microgrids. IEEE Trans. Ind. Electron. 65, 1205-1212 (2017). https://doi.org/10.1109/TIE.2017.2733463
- Ye, H., Jin, G., Fei, W., Ghadimi, N.: High step-up interleaved DC/DC converter with high efciency. Energy Sources Part A Recover. Util. Environ. Ef. (2020). https://doi.org/10.1080/15567036.2020.1716111
- Vafa, M., Ershadi, M.H., Khodadadi, H., Baharizadeh, M.: An interleaved high step-up DC-DC converter with low voltage stress. Iran. J. Sci. Technol. Trans. Electr. Eng. (2020). https://doi.org/10.1007/s40998-020-00366-w
- Lopez-Santos, O., Mayo-Maldonado, J.C., Rosas-Caro, J.C., Valdez-Resendiz, J.E., Zambrano-Prada, D.A., Ruiz-Martinez, O.F.: Quadratic boost converter with low-output-voltage ripple. IET Power Electron. 13, 1605-1612 (2020). https://doi.org/10.1049/iet-pel.2019.0472
- Valdez-Resendiz, J.E., Rosas-Caro, J.C., Mayo-Maldonado, J.C., Llamas-Terres, A.: Quadratic boost converter based on stackable switching stages. IET Power Electron. 11, 1373-1381 (2018). https://doi.org/10.1049/iet-pel.2017.0278
- Marimuthu, M., Vijayalakshmi, S., Shenbagalakshmi, R.: A novel non-isolated single switch multilevel cascaded DC-DC boost converter for multilevel inverter application. J. Electr. Eng. Technol. 15, 2157-2166 (2020). https://doi.org/10.1007/s42835-020-00494-7
- Lotf Nejad, M., Poorali, B., Adib, E., Birjandi, A.A.M.: New cascade boost converter with reduced losses. IET Power Electron. 9, 1213-1219 (2016). https://doi.org/10.1049/iet-pel.2015.0240
- de Bento, A.A.M.: Hybrid operational high step-up DC-DC converter. J. Control. Autom. Electr. Syst. 31, 350-359 (2020). https://doi.org/10.1007/s40313-019-00548-w
- Zhang, N., Zhang, G., See, K.W., Zhang, B.: A single-switch quadratic buck-boost converter with continuous input port current and continuous output port current. IEEE Trans. Power Electron. 33, 4157-4166 (2018). https://doi.org/10.1109/TPEL.2017.2717462
- Banaei, M.R., Sani, S.G.: Analysis and implementation of a new SEPIC-based single-switch buck-boost DC-DC converter with continuous input current. IEEE Trans. Power Electron. 33, 10317-10325 (2018). https://doi.org/10.1109/TPEL.2018.2799876
- Ansari, S.A., Moghani, J.S.: A novel high voltage gain noncoupled inductor SEPIC converter. IEEE Trans. Ind. Electron. 66, 7099-7108 (2019). https://doi.org/10.1109/TIE.2018.2878127
- Salvador, M.A., Lazzarin, T.B., Coelho, R.F.: High step-up DC- DC converter with active switched-inductor and passive switchedcapacitor networks. IEEE Trans. Ind. Electron. 65, 5644-5654 (2018). https://doi.org/10.1109/TIE.2017.2782239
- Zhu, M., Luo, F.L.: Voltage-lift-type Cuk converters: Topology and analysis. IET Power Electron. 2, 178-191 (2009). https://doi.org/10.1049/iet-pel:20070023