DOI QR코드

DOI QR Code

Novel double switch voltage-lift Cuk converter

  • G. Sivaraj (Department of Electrical and Electronics Engineering, Government College of Engineering) ;
  • P. Karpagavalli (Department of Electrical and Electronics Engineering, Government College of Engineering)
  • Received : 2022.01.31
  • Accepted : 2022.08.09
  • Published : 2023.01.20

Abstract

High voltage conversion with a continuous input and output current is the prime requirement for electric vehicles and renewable energy applications. In this paper, a new topology based on the Cuk converter is proposed to meet the high step-up gain, reduced switch stress, and continuous input current requirements. The topology is derived from the Cuk converter by using two switches, three inductors, a voltage-lift capacitor, and switched-capacitors. When compared to conventional converters, the proposed converter achieves a high step-up gain with reduced switch stress. Since the topology does not consist of a coupled inductor or transformer structure, voltage spikes during the turnof process are eliminated. In addition, by simply varying the duty ratio of the two switches, a wide output voltage range is possible. The duty cycle and the switching pulses for the two switches are identical. Hence, the operation and control are simple. To analyze the topology, the continuous conduction mode of operation, voltage, and current stress of the devices, as well as an efciency analysis are discussed. Finally, a 690 W prototype is implemented to experimentally examine and investigate the proposed converter.

Keywords

References

  1. Larminie, J., Lowry, J.: Electric Vehicle Technology Explained: Second Edition. (2012). https://doi.org/10.1002/9781118361146
  2. Lukic, S.M., Cao, J., Bansal, R.C., Rodriguez, F., Emadi, A.: Energy storage systems for automotive applications. IEEE Trans. Ind. Electron. 55, 2258-2267 (2008). https://doi.org/10.1109/TIE.2008.918390
  3. Hart Danial, W.: Commonly Used Power and Converter Equations. McGraw Hill, New York (2010)
  4. Bellur, D.M., Kazimierczuk, M.K.: DC-DC converters for electric vehicle applications. In: 2007 Electr. Insul. Conf. Electr. Manuf. Expo, EEIC 2007, pp 286-293 (2007). https://doi.org/10.1109/EEIC.2007.4562633
  5. Ellis, M.W., Von Spakovsky, M.R., Nelson, D.J.: Fuel cell systems: efcient, fexible energy conversion for the 21st century. Proc. IEEE. 89, 1808-1817 (2001). https://doi.org/10.1109/5.975914
  6. Richardson, D.B.: Electric vehicles and the electric grid: a review of modeling approaches, impacts, and renewable energy integration. Renew. Sustain. Energy Rev. 19, 247-254 (2013). https://doi.org/10.1016/j.rser.2012.11.042
  7. Luthander, R., Shepero, M., Munkhammar, J., Widen, J.: Photovoltaics and opportunistic electric vehicle charging in the power system-a case study on a Swedish distribution grid. IET Renew. Power Gener. 13, 710-716 (2019). https://doi.org/10.1049/iet-rpg.2018.5082
  8. Amir, A., Amir, A., Che, H.S., Elkhateb, A., Rahim, N.A.: Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems. Renew. Energy. 136, 1147-1163 (2019). https://doi.org/10.1016/j.renene.2018.09.089
  9. Cardoso, V., Brockveld, S.L., Lazzarin, T.B., Waltrich, G.: Double boost-fyback converter. IET Power Electron. 13, 1163-1171 (2020). https://doi.org/10.1049/iet-pel.2019.1073
  10. Park, K.B., Moon, G.W., Youn, M.J.: High step-up boost converter integrated with voltage-doubler. In: 2010 IEEE Energy Convers. Congr. Expo. ECCE 2010-Proc., vol. 25, pp. 810-816 (2010). https://doi.org/10.1109/ECCE.2010.5617916
  11. Maheswari, L., Sivakumaran, N.: An isolated single-switch high step-up DC/DC converter with three-winding transformer for solar photovoltaic applications. Electr. Eng. 102, 1383-1392 (2020). https://doi.org/10.1007/s00202-020-00959-y
  12. Hu, X., Gao, B., Huang, Y., Chen, H.: Novel single switch DC-DC converter for high step-up conversion ratio. J. Power Electron. 18, 662-671 (2018). https://doi.org/10.6113/JPE.2018.18.3.662
  13. Subramanian, V., Manimaran, S.: Design of parallel-operated SEPIC converters using coupled inductor for load-sharing. J. Power Electron. 15, 327-337 (2015). https://doi.org/10.6113/JPE.2015.15.2.327
  14. Premkumar, M., Kumar, C., Anbarasan, A., Sowmya, R.: A novel non-isolated high step-up DC-DC boost converter using single switch for renewable energy systems. Electr. Eng. 102, 811-829 (2020). https://doi.org/10.1007/s00202-019-00904-8
  15. Ding, X., Zhao, D., Liu, Y., Li, K., Hao, Y.: High step-up threelevel DC-DC converter with three-winding coupled-inductor. J. Power Electron. 20, 53-64 (2020). https://doi.org/10.1007/s43236-019-00006-5
  16. Yang, L.S.: Novel dual DC-DC fyback converter with leakageenergy recycling. J. Power Electron. 18, 1007-1014 (2018). https://doi.org/10.6113/JPE.2018.18.4.1007
  17. Raja, R., Jagadeesan, A., Princelynjebakiruba, R., Navabalachandru, C.: An efcient high-step-up interleaved with a common active clamp DC-DC converter for electric vehicle. In: 2013 Int. Conf. Energy Efc. Technol. Sustain. ICEETS 2013, vol. 26, pp. 760-764 (2013). https://doi.org/10.1109/ICEETS.2013.6533480
  18. Luo, Q., Zhang, Y., Sun, P., Zhou, L.: An active clamp high step-up boost converter with a coupled inductor. J. Power Electron. 15, 86-95 (2014). https://doi.org/10.6113/JPE.2015.15.1.86
  19. Kokkonda, K., Kulkarni, P.S.: A high gain soft-switching activeclamped coupled-inductor-based converter for grid-tied photovoltaic applications. Electr. Eng. 103, 2783-2797 (2021). https://doi.org/10.1007/s00202-021-01250-4
  20. Tseng, K.C., Chen, J.Z., Lin, J.T., Huang, C.C., Yen, T.H.: High step-up interleaved forward-fyback boost converter with threewinding coupled inductors. IEEE Trans. Power Electron. 30, 4696-4703 (2015). https://doi.org/10.1109/TPEL.2014.2364292
  21. Leao e Silva Aquino, R.N.A., Tofoli, F.L., Praca, P.P., de Souza Oliveira, D., Barreto, L.H.S.C.: Soft switching high-voltage gain dc-dc interleaved boost converter. IET Power Electron. 8, 120-129 (2015). https://doi.org/10.1049/iet-pel.2014.0275
  22. Joseph, P.K., Devaraj, E.: Design of hybrid forward boost converter for renewable energy powered electric vehicle charging applications. IET Power Electron. 12, 2015-2021 (2019). https://doi.org/10.1049/iet-pel.2019.0151
  23. Tofoli, F.L., de Pereira, D.C., de Paula, W.J., de Oliveira Junior, D.S.: Survey on non-isolated high-voltage step-up DC-DC topologies based on the boost converter. IET Power Electron. 8, 2044-2057 (2015). https://doi.org/10.1049/iet-pel.2014.0605
  24. Axelrod, B., Berkovich, Y., Ioinovici, A.: Switched-capacitor/ switched-inductor structures for getting transformerless hybrid DC-DC PWM converters. IEEE Trans Circuits Syst. I Regul. Pap. 55, 687-696 (2008). https://doi.org/10.1109/TCSI.2008.916403
  25. Yang, L.S., Liang, T.J., Chen, J.F.: Transformerless DC-DC converters with high step-up voltage gain. IEEE Trans. Ind. Electron. 56, 3144-3152 (2009). https://doi.org/10.1109/TIE.2009.2022512
  26. Lakshmi, M., Hemamalini, S.: Nonisolated high gain DC-DC converter for DC microgrids. IEEE Trans. Ind. Electron. 65, 1205-1212 (2017). https://doi.org/10.1109/TIE.2017.2733463
  27. Ye, H., Jin, G., Fei, W., Ghadimi, N.: High step-up interleaved DC/DC converter with high efciency. Energy Sources Part A Recover. Util. Environ. Ef. (2020). https://doi.org/10.1080/15567036.2020.1716111
  28. Vafa, M., Ershadi, M.H., Khodadadi, H., Baharizadeh, M.: An interleaved high step-up DC-DC converter with low voltage stress. Iran. J. Sci. Technol. Trans. Electr. Eng. (2020). https://doi.org/10.1007/s40998-020-00366-w
  29. Lopez-Santos, O., Mayo-Maldonado, J.C., Rosas-Caro, J.C., Valdez-Resendiz, J.E., Zambrano-Prada, D.A., Ruiz-Martinez, O.F.: Quadratic boost converter with low-output-voltage ripple. IET Power Electron. 13, 1605-1612 (2020). https://doi.org/10.1049/iet-pel.2019.0472
  30. Valdez-Resendiz, J.E., Rosas-Caro, J.C., Mayo-Maldonado, J.C., Llamas-Terres, A.: Quadratic boost converter based on stackable switching stages. IET Power Electron. 11, 1373-1381 (2018). https://doi.org/10.1049/iet-pel.2017.0278
  31. Marimuthu, M., Vijayalakshmi, S., Shenbagalakshmi, R.: A novel non-isolated single switch multilevel cascaded DC-DC boost converter for multilevel inverter application. J. Electr. Eng. Technol. 15, 2157-2166 (2020). https://doi.org/10.1007/s42835-020-00494-7
  32. Lotf Nejad, M., Poorali, B., Adib, E., Birjandi, A.A.M.: New cascade boost converter with reduced losses. IET Power Electron. 9, 1213-1219 (2016). https://doi.org/10.1049/iet-pel.2015.0240
  33. de Bento, A.A.M.: Hybrid operational high step-up DC-DC converter. J. Control. Autom. Electr. Syst. 31, 350-359 (2020). https://doi.org/10.1007/s40313-019-00548-w
  34. Zhang, N., Zhang, G., See, K.W., Zhang, B.: A single-switch quadratic buck-boost converter with continuous input port current and continuous output port current. IEEE Trans. Power Electron. 33, 4157-4166 (2018). https://doi.org/10.1109/TPEL.2017.2717462
  35. Banaei, M.R., Sani, S.G.: Analysis and implementation of a new SEPIC-based single-switch buck-boost DC-DC converter with continuous input current. IEEE Trans. Power Electron. 33, 10317-10325 (2018). https://doi.org/10.1109/TPEL.2018.2799876
  36. Ansari, S.A., Moghani, J.S.: A novel high voltage gain noncoupled inductor SEPIC converter. IEEE Trans. Ind. Electron. 66, 7099-7108 (2019). https://doi.org/10.1109/TIE.2018.2878127
  37. Salvador, M.A., Lazzarin, T.B., Coelho, R.F.: High step-up DC- DC converter with active switched-inductor and passive switchedcapacitor networks. IEEE Trans. Ind. Electron. 65, 5644-5654 (2018). https://doi.org/10.1109/TIE.2017.2782239
  38. Zhu, M., Luo, F.L.: Voltage-lift-type Cuk converters: Topology and analysis. IET Power Electron. 2, 178-191 (2009). https://doi.org/10.1049/iet-pel:20070023