Acknowledgement
This work was supported by a 2-Year Research Grant of Pusan National University.
References
- R. Nehru, P. K. Gopi, S. M. Chen, Enhanced sensing of hazardous 4-nitrophenol by a graphene oxide-TiO2 composite: environmental pollutant monitoring applications, New J. Chem., 44 (2020) 4590-4603. https://doi.org/10.1039/c9nj06176b
- P. Balasubramanian, T. S. T. Balamurugan, S. M. Chen, T. W. Chen, Simplistic synthesis of ultrafine CoMnO3 nanosheets: An excellent electrocatalyst for highly sensitive detection of toxic 4-nitrophenol in environmental water samples, J. Hazard. Mater., 361 (2019) 123-133. https://doi.org/10.1016/j.jhazmat.2018.08.070
- B. Dinesh, R. Saraswathi, Electrochemical synthesis of nanostructured copper-curcumin complex and its electrocatalytic application towards reduction of 4-nitrophenol, Sens. Actuators B Chem., 253 (2017) 502-512. https://doi.org/10.1016/j.snb.2017.06.149
- P. Mulchandani, C. M. Hangarter, Y. Lei, W. Chen, A. Mulchandani, Amperometric microbial biosensor for p-nitrophenol using Moraxella sp.-modified carbon paste electrode, Biosens. Bioelectron., 21 (2005) 523-527. https://doi.org/10.1016/j.bios.2004.11.011
- N. I. Ikhsan, P. Rameshkumar, N. M. Huang, Controlled synthesis of reduced graphene oxide supported silver nanoparticles for selective and sensitive electrochemical detection of 4-nitrophenol, Electrochim. Acta, 192 (2016) 392-399. https://doi.org/10.1016/j.electacta.2016.02.005
- M. Buser, R. Klein, K. Haire, R. Balachandran, N. Roney, H. Derrick, S. Hall, A. Gao, Toxicological profile for nitrophenols: 2-nitrophenol 4-nitrophenol (1992).
- A. A. Kassem, H. N. Abdelhamid, D. M. Fouad, S. A. Ibrahim, Catalytic reduction of 4-nitrophenol using copper terephthalate frameworks and CuO@ C composite, J. Environ. Chem. Eng., 9 (2021) 104401.
- Y. R. Mejia, N. K. R. Bogireddy, Reduction of 4-nitrophenol using green-fabricated metal nanoparticles, RSC Adv., 12(29) (2022) 18661-18675. https://doi.org/10.1039/D2RA02663E
- D. Battal, A. A. Sukuroglu, K. Kocadal, I. Cok, I. Unlusayin, Establishment of rapid, sensitive, and quantitative liquid chromatography-electrospray ionization-tandem mass spectrometry method coupled with liquid-liquid extraction for measurement of urinary bisphenol A, 4-t-octylphenol, and 4-nonylphenol, Rapid Commun. Mass Spectrom., 35 (2021) e9084.
- S. Erarpat, S. Bodur, D. S. Chormey, E. Oz, S. Bakirdere, Sensitive Determination of 4-n-nonylphenol in domestic wastewater and liquid detergent by binary solvent microextraction (BSME) and gas chromatography-mass spectrometry (GC-MS) with matrix matching calibration, Anal. Lett., 55 (2022) 1080-1092. https://doi.org/10.1080/00032719.2021.1985511
- X. Guo, Z. Wang, S. Zhou, The separation and determination of nitrophenol isomers by high-performance capillary zone electrophoresis, Talanta, 64 (2004) 135-139. https://doi.org/10.1016/j.talanta.2004.01.020
- W. Zhang, C. R. Wilson, N. D. Danielson, Indirect fluorescent determination of selected nitro-aromatic and pharmaceutical compounds via UV-photolysis of 2-phenylbenzimidazole-5-sulfonate, Talanta, 74 (2008) 1400-1407. https://doi.org/10.1016/j.talanta.2007.09.016
- K. Giribabu, R. Suresh, R. Manigandan, S. Praveen Kumar, S. Muthamizh, S. Munusamy, V. Narayanan, Preparation of nitrogen-doped reduced graphene oxide and its use in a glassy carbon electrode for sensing 4-nitrophenol at nanomolar levels, Microchim. Acta, 181 (2014) 1863-1870. https://doi.org/10.1007/s00604-014-1251-4
- M. Ramalingam, V. K. Ponnusamy, S. N. Sangilimuthu, Electrochemical determination of 4-nitrophenol in environmental water samples using porous graphitic carbon nitride-coated screen-printed electrode, Environ. Sci. Pollut. Res., 27 (2020) 17481-17491. https://doi.org/10.1007/s11356-019-05494-3
- S. S. Naik, S. J. Lee, J. Theerthagiri, Y. Yu, M. Y. Choi, Rapid and highly selective electrochemical sensor based on ZnS/Au-decorated f-multi-walled carbon nanotube nanocomposites produced via pulsed laser technique for detection of toxic nitro compounds, J. Hazard. Mater., 418 (2021) 126269.
- Z. Liuzhu, S. Sekar, J. Chen, S. Lee, D.Y. Kim, R. Manikandan, A polyrutin/AgNPs coated GCE for simultaneous anodic stripping voltammetric determination of Pb(II) and Cd(II)ions in environmental samples, Colloids Surf. A: Physicochem. Eng. Asp., 648 (2022) 129082.
- P. Rajiv, R. Manikandan, S. Sangeetha, P. Vanathi, S. Dhanasekaran, Fabrication of biogenic iron oxide and their efficiency to detect carbofuran in vegetable samples, Inorg. Chem. Commun., 142 (2022) 109649.
- Z. Yu, L. Wang, X. Mu, C. C. Chen, Y. Wu, J. Cao, Y. Tang, Intramolecular electric field construction in metal phthalocyanine as dopant-free hole transporting material for stable perovskite solar cells with >21% efficiency, Angew. Chem. Int. Ed., 60 (2021) 6294-6299. https://doi.org/10.1002/anie.202016087
- A. B. Sorokin, From mononuclear iron phthalocyanines in catalysis to µ-nitrido diiron complexes and beyond, Catal. Today, 373 (2021) 38-58. https://doi.org/10.1016/j.cattod.2021.03.016
- S. Sekar, J. Huijun, Z. Liuzhu, C. Jin, S. Lee, D. Y. Kim, R. Manikandan, Copper phthalocyanine conjugated graphitic carbon nitride nanosheets as an efficient electrocatalyst for simultaneous detection of natural antioxidants, Electrochim. Acta, 413 (2022) 140150.
- E. Demir, H. Silah, B. Uslu, Phthalocyanine modified electrodes in electrochemical analysis, Crit. Rev. Anal. Chem., 52 (2022) 425-461. https://doi.org/10.1080/10408347.2020.1806702
- B.N. Achar, G.M. Fohlen, J.A. Parker, Phthalocyanine polymers. IV. Novel type of thermally stable polyimides derived from metal phthalocyanine tetramines and benzophenone tetracarboxylic dianhydride, Journal of Polymer Science: Polymer Chemistry Edition, 20(10) (1982) 2773-2780. https://doi.org/10.1002/pol.1982.170201004
- M. Pari, K. R. V. Reddy, C. K. B Fasiulla, Amperometric determination of dopamine based on an interface platform comprising tetra-substituted Zn2+ phthalocyanine film layer with embedment of reduced graphene oxide, Sens. Actuator A Phys., 316 (2020) 112377.
- S. Malali Sudhakara, M. Chattanahalli Devendrachari, H. Makri Nimbegondi Kotresh, F. Khan, Silver nanoparticles decorated phthalocyanine doped polyaniline for the simultaneous electrochemical detection of hydroquinone and catechol, J. Electroanal. Chem., 884 (2021) 115071.
- S. Pakapongpan, J. P. Mensing, D. Phokharatkul, T. Lomas, A. Tuantranont, Highly selective electrochemical sensor for ascorbic acid based on a novel hybrid graphene-copper phthalocyanine-polyaniline nanocomposites, Electrochim. Acta, 133 (2014) 294-301. https://doi.org/10.1016/j.electacta.2014.03.167
- L. Zhihua, Z. Xucheng, S. Jiyong, Z. Xiaobo, H. Xiaowei, H.E. Tahir, M. Holmes, Fast response ammonia sensor based on porous thin film of polyaniline/sulfonated nickel phthalocyanine composites, Sens. Actuators B Chem., 226 (2016) 553-562. https://doi.org/10.1016/j.snb.2015.10.062
- I. S. Hosu, Q. Wang, A. Vasilescu, S. F. Peteu, V. Raditoiu, S. Railian, V. Zaitsev, K. Turcheniuk, Q. Wang, M. Li, R. Boukherroub, S. Szunerits, Cobalt phthalocyanine tetracarboxylic acid modified reduced graphene oxide: a sensitive matrix for the electrocatalytic detection of peroxynitrite and hydrogen peroxide, RSC Adv., 5 (2015) 1474-1484. https://doi.org/10.1039/C4RA09781E
- Z. A. Boeva, V. G. Sergeyev, Polyaniline: Synthesis, properties, and application, Polym. Sci. Ser. C, 56 (2014) 144-153. https://doi.org/10.1134/s1811238214010032
- S. M. Sudhakara, M. C. Devendrachari, H. M. N. Kotresh, F. Khan, Phthalocyanine pendented polyaniline via amide linkage for an electrochemical sensing of H2O2, Microchem. J., 161 (2021) 105781.
- V. G. Sree, J. I. Sohn, H. Im, Pre-anodized graphite pencil electrode coated with a poly(thionine) film for simultaneous sensing of 3-nitrophenol and 4-nitrophenol in environmental water samples, Sensors, 22 (2022) 1151.
- A. Padmanaban, T. Dhanasekaran, R. Manigandan, S. P. Kumar, G. Gnanamoorthy, A. Stephen, V. Narayanan, Facile solvothermal decomposition synthesis of single phase ZnBi38O60 nanobundles for sensitive detection of 4-nitrophenol, New J. Chem., 41 (2017) 7020-7027. https://doi.org/10.1039/C7NJ00436B
- A. M. A. Aziz, H. H. Hassan, I. H. A. Badr, Activated glassy carbon electrode as an electrochemical sensing platform for the determination of 4-nitrophenol and dopamine in real samples, ACS Omega, 7 (2022) 34127-34135. https://doi.org/10.1021/acsomega.2c03427
- R. Krishnamoorthy, K. Muthumalai, T. Nagaraja, R. T. Rajendrakumar, S. R. Das, Chemically exfoliated titanium carbide MXene for highly sensitive electrochemical sensors for detection of 4-nitrophenols in drinking water, ACS Omega, 7 (2022) 42644-42654. https://doi.org/10.1021/acsomega.2c06505
- X. Nie, P. Deng, H. Wang, Y. Tang, An electrochemical sensor based on a nitrogen-doped carbon material and PEI composites for sensitive detection of 4-nitrophenol, Nanomaterials, 12 (2021) 86.
- N. Manjula, S. M. Chen, Simple strategy synthesis of manganese cobalt oxide anchored on graphene oxide composite as an efficient electrocatalyst for hazardous 4-nitrophenol detection in toxic tannery waste, Microchem. J., 168 (2021) 106514.
- V. A. Sajjan, S. Aralekallu, M. Nemakal, M. Palanna, C. P. K. Prabhu, L. Koodlur Sannegowda, Nanomolar detection of 4-nitrophenol using Schiff-base phthalocyanine, Microchem. J., 164 (2021) 105980.
- U. Chakraborty, G. Bhanjana, Kannu, N. Kaur, R. Sharma, G. Kaur, A. Kaushik, G. R. Chaudhary, Microwave-assisted assembly of Ag2O-ZnO composite nanocones for electrochemical detection of 4-Nitrophenol and assessment of their photocatalytic activity towards degradation of 4-Nitrophenol and Methylene blue dye, J. Hazard. Mater., 416 (2021) 125771.
- X. B. Joseph, J. C. Ezhilarasi, S. F. Wang, E. Elanthamilan, B. Sriram, J.P. Merlin, Fabrication of CO3O4 nanoparticle-decorated porous activated carbon electrode for the electrochemical detection of 4-nitrophenol, New J. Chem., 45 (2021) 18358-18365. https://doi.org/10.1039/D1NJ02642A
- R. Huang, D. Liao, Z. Liu, J. Yu, X. Jiang, Electrostatically assembling 2D hierarchical Nb2CTx and zifs-derivatives into Zn-Co-NC nanocage for the electrochemical detection of 4-nitrophenol, Sens. Actuators B Chem., 338 (2021) 129828.
- M. Faisal, M. M. Alam, J. Ahmed, A. M. Asiri, M. Jalalah, R. S. Alruwais, M. M. Rahman, F. A. Harraz, Sensitive electrochemical detection of 4-nitrophenol with PEDOT:PSS modified Pt NPs-embedded PPy-CB@ZnO nanocomposites, Biosensors, 12 (2022) 990.
- D. Ren, X. Wang, C. Leng, W. Meng, J. Zhang, C. Han, A highly sensitive electrochemical sensing platform based on p-doped Fe/Fe3O4@C for the detection of 4-nitrophenol, J. Electrochem. Soc., 169 (2022) 097501.
- B. Wang, Q. He, G. Li, Y. Long, G. Zhang, H. Liu, J. Liu, Sensitive determination of trace 4-nitrophenol in ambient environment using a glassy carbon electrode modified with formamide-converted nitrogen-doped carbon materials, Int. J. Mol. Sci., 23 (2022) 12182.
- R. Krishnamoorthy, K. Muthumalai, T. Nagaraja, R. T. Rajendrakumar, S. R. Das, Chemically exfoliated titanium carbide MXene for detection of 4-nitrophenols in drinking water, ACS Omega, 7 (2022) 42644-42654. https://doi.org/10.1021/acsomega.2c06505
- A. F. Baye, D. H. Han, S. K. Kassahun, R. A. Ntiamoah, H. Kim, Improving the reduction and sensing capability of Fe3O4 towards 4-nitrophenol by coupling with ZnO/Fe0/Fe3C/graphitic carbon using ZnFe-LDH@carbon as a template, Electrochim. Acta, 398 (2021) 139343.
- A. Umar, M. S. Akhtar, H. Algadi, A. A. Ibrahim, M. A. M. Alhamami, S. Baskoutas, Highly sensitive and selective eco-toxic 4-nitrophenol chemical sensor based on Ag-doped ZnO nanoflowers decorated with nanosheets, Molecules, 26 (2021) 4619.