DOI QR코드

DOI QR Code

Copper phthalocyanine conjugated PANI coated screen printed carbon electrode for electrochemical sensing of 4-NP

  • Ramalingam Manikandan (Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University) ;
  • Jang-Hee Yoon (Busan center, Korea Basic Science Institute) ;
  • Seung-Cheol Chang (Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University)
  • Received : 2023.01.10
  • Accepted : 2023.01.26
  • Published : 2023.02.28

Abstract

In this work, we synthesized a novel electrochemical sensing materials based on tetracarboxylic copper phthalocyanine (TcCuPtc) conjugated PANI (TcCuPtc@PANI). The synthesized materials were employed to modify the screen-printed carbon electrode (SPCE) for the selective sensing of 4-nitrophenol. The TcCuPtc was conjugated with conducting polymer of PANI through the electrostatic interaction and π-π electron conjugation, the polymer film of PANI to inhibit the leakage of TcCuPtc from the surface of the electrode. The prepared TcCuPtc@PANI were characterized and confirmed by scanning electron microscopy (SEM) with EDX, ATR-IR, UV-vis absorption spectroscopy, cyclic voltammetry, and differential pulse voltammetry techniques. The prepared TcCuPtc@PANI/SPCE showed an excellent electrocatalytic sensing of 4-NP in the linear concentrations from 3 to 500 nM with a LOD of 0.03 nM and a sensitivity of 8.8294 ㎂/nM cm-2. However, the prepared TcCuPtc@PANI/SPCE showed selective sensing of 4-NP in the presence of other interfering species. The practical applicability of the TcCuPtc@PANI/SPCE was employed for the sensing of 4-NP in different water samples by standard addition method and showed satisfactory recovery results.

Keywords

Acknowledgement

This work was supported by a 2-Year Research Grant of Pusan National University.

References

  1. R. Nehru, P. K. Gopi, S. M. Chen, Enhanced sensing of hazardous 4-nitrophenol by a graphene oxide-TiO2 composite: environmental pollutant monitoring applications, New J. Chem., 44 (2020) 4590-4603. https://doi.org/10.1039/c9nj06176b
  2. P. Balasubramanian, T. S. T. Balamurugan, S. M. Chen, T. W. Chen, Simplistic synthesis of ultrafine CoMnO3 nanosheets: An excellent electrocatalyst for highly sensitive detection of toxic 4-nitrophenol in environmental water samples, J. Hazard. Mater., 361 (2019) 123-133. https://doi.org/10.1016/j.jhazmat.2018.08.070
  3. B. Dinesh, R. Saraswathi, Electrochemical synthesis of nanostructured copper-curcumin complex and its electrocatalytic application towards reduction of 4-nitrophenol, Sens. Actuators B Chem., 253 (2017) 502-512. https://doi.org/10.1016/j.snb.2017.06.149
  4. P. Mulchandani, C. M. Hangarter, Y. Lei, W. Chen, A. Mulchandani, Amperometric microbial biosensor for p-nitrophenol using Moraxella sp.-modified carbon paste electrode, Biosens. Bioelectron., 21 (2005) 523-527. https://doi.org/10.1016/j.bios.2004.11.011
  5. N. I. Ikhsan, P. Rameshkumar, N. M. Huang, Controlled synthesis of reduced graphene oxide supported silver nanoparticles for selective and sensitive electrochemical detection of 4-nitrophenol, Electrochim. Acta, 192 (2016) 392-399. https://doi.org/10.1016/j.electacta.2016.02.005
  6. M. Buser, R. Klein, K. Haire, R. Balachandran, N. Roney, H. Derrick, S. Hall, A. Gao, Toxicological profile for nitrophenols: 2-nitrophenol 4-nitrophenol (1992).
  7. A. A. Kassem, H. N. Abdelhamid, D. M. Fouad, S. A. Ibrahim, Catalytic reduction of 4-nitrophenol using copper terephthalate frameworks and CuO@ C composite, J. Environ. Chem. Eng., 9 (2021) 104401.
  8. Y. R. Mejia, N. K. R. Bogireddy, Reduction of 4-nitrophenol using green-fabricated metal nanoparticles, RSC Adv., 12(29) (2022) 18661-18675. https://doi.org/10.1039/D2RA02663E
  9. D. Battal, A. A. Sukuroglu, K. Kocadal, I. Cok, I. Unlusayin, Establishment of rapid, sensitive, and quantitative liquid chromatography-electrospray ionization-tandem mass spectrometry method coupled with liquid-liquid extraction for measurement of urinary bisphenol A, 4-t-octylphenol, and 4-nonylphenol, Rapid Commun. Mass Spectrom., 35 (2021) e9084.
  10. S. Erarpat, S. Bodur, D. S. Chormey, E. Oz, S. Bakirdere, Sensitive Determination of 4-n-nonylphenol in domestic wastewater and liquid detergent by binary solvent microextraction (BSME) and gas chromatography-mass spectrometry (GC-MS) with matrix matching calibration, Anal. Lett., 55 (2022) 1080-1092. https://doi.org/10.1080/00032719.2021.1985511
  11. X. Guo, Z. Wang, S. Zhou, The separation and determination of nitrophenol isomers by high-performance capillary zone electrophoresis, Talanta, 64 (2004) 135-139. https://doi.org/10.1016/j.talanta.2004.01.020
  12. W. Zhang, C. R. Wilson, N. D. Danielson, Indirect fluorescent determination of selected nitro-aromatic and pharmaceutical compounds via UV-photolysis of 2-phenylbenzimidazole-5-sulfonate, Talanta, 74 (2008) 1400-1407. https://doi.org/10.1016/j.talanta.2007.09.016
  13. K. Giribabu, R. Suresh, R. Manigandan, S. Praveen Kumar, S. Muthamizh, S. Munusamy, V. Narayanan, Preparation of nitrogen-doped reduced graphene oxide and its use in a glassy carbon electrode for sensing 4-nitrophenol at nanomolar levels, Microchim. Acta, 181 (2014) 1863-1870. https://doi.org/10.1007/s00604-014-1251-4
  14. M. Ramalingam, V. K. Ponnusamy, S. N. Sangilimuthu, Electrochemical determination of 4-nitrophenol in environmental water samples using porous graphitic carbon nitride-coated screen-printed electrode, Environ. Sci. Pollut. Res., 27 (2020) 17481-17491. https://doi.org/10.1007/s11356-019-05494-3
  15. S. S. Naik, S. J. Lee, J. Theerthagiri, Y. Yu, M. Y. Choi, Rapid and highly selective electrochemical sensor based on ZnS/Au-decorated f-multi-walled carbon nanotube nanocomposites produced via pulsed laser technique for detection of toxic nitro compounds, J. Hazard. Mater., 418 (2021) 126269.
  16. Z. Liuzhu, S. Sekar, J. Chen, S. Lee, D.Y. Kim, R. Manikandan, A polyrutin/AgNPs coated GCE for simultaneous anodic stripping voltammetric determination of Pb(II) and Cd(II)ions in environmental samples, Colloids Surf. A: Physicochem. Eng. Asp., 648 (2022) 129082.
  17. P. Rajiv, R. Manikandan, S. Sangeetha, P. Vanathi, S. Dhanasekaran, Fabrication of biogenic iron oxide and their efficiency to detect carbofuran in vegetable samples, Inorg. Chem. Commun., 142 (2022) 109649.
  18. Z. Yu, L. Wang, X. Mu, C. C. Chen, Y. Wu, J. Cao, Y. Tang, Intramolecular electric field construction in metal phthalocyanine as dopant-free hole transporting material for stable perovskite solar cells with >21% efficiency, Angew. Chem. Int. Ed., 60 (2021) 6294-6299. https://doi.org/10.1002/anie.202016087
  19. A. B. Sorokin, From mononuclear iron phthalocyanines in catalysis to µ-nitrido diiron complexes and beyond, Catal. Today, 373 (2021) 38-58. https://doi.org/10.1016/j.cattod.2021.03.016
  20. S. Sekar, J. Huijun, Z. Liuzhu, C. Jin, S. Lee, D. Y. Kim, R. Manikandan, Copper phthalocyanine conjugated graphitic carbon nitride nanosheets as an efficient electrocatalyst for simultaneous detection of natural antioxidants, Electrochim. Acta, 413 (2022) 140150.
  21. E. Demir, H. Silah, B. Uslu, Phthalocyanine modified electrodes in electrochemical analysis, Crit. Rev. Anal. Chem., 52 (2022) 425-461. https://doi.org/10.1080/10408347.2020.1806702
  22. B.N. Achar, G.M. Fohlen, J.A. Parker, Phthalocyanine polymers. IV. Novel type of thermally stable polyimides derived from metal phthalocyanine tetramines and benzophenone tetracarboxylic dianhydride, Journal of Polymer Science: Polymer Chemistry Edition, 20(10) (1982) 2773-2780. https://doi.org/10.1002/pol.1982.170201004
  23. M. Pari, K. R. V. Reddy, C. K. B Fasiulla, Amperometric determination of dopamine based on an interface platform comprising tetra-substituted Zn2+ phthalocyanine film layer with embedment of reduced graphene oxide, Sens. Actuator A Phys., 316 (2020) 112377.
  24. S. Malali Sudhakara, M. Chattanahalli Devendrachari, H. Makri Nimbegondi Kotresh, F. Khan, Silver nanoparticles decorated phthalocyanine doped polyaniline for the simultaneous electrochemical detection of hydroquinone and catechol, J. Electroanal. Chem., 884 (2021) 115071.
  25. S. Pakapongpan, J. P. Mensing, D. Phokharatkul, T. Lomas, A. Tuantranont, Highly selective electrochemical sensor for ascorbic acid based on a novel hybrid graphene-copper phthalocyanine-polyaniline nanocomposites, Electrochim. Acta, 133 (2014) 294-301. https://doi.org/10.1016/j.electacta.2014.03.167
  26. L. Zhihua, Z. Xucheng, S. Jiyong, Z. Xiaobo, H. Xiaowei, H.E. Tahir, M. Holmes, Fast response ammonia sensor based on porous thin film of polyaniline/sulfonated nickel phthalocyanine composites, Sens. Actuators B Chem., 226 (2016) 553-562. https://doi.org/10.1016/j.snb.2015.10.062
  27. I. S. Hosu, Q. Wang, A. Vasilescu, S. F. Peteu, V. Raditoiu, S. Railian, V. Zaitsev, K. Turcheniuk, Q. Wang, M. Li, R. Boukherroub, S. Szunerits, Cobalt phthalocyanine tetracarboxylic acid modified reduced graphene oxide: a sensitive matrix for the electrocatalytic detection of peroxynitrite and hydrogen peroxide, RSC Adv., 5 (2015) 1474-1484. https://doi.org/10.1039/C4RA09781E
  28. Z. A. Boeva, V. G. Sergeyev, Polyaniline: Synthesis, properties, and application, Polym. Sci. Ser. C, 56 (2014) 144-153. https://doi.org/10.1134/s1811238214010032
  29. S. M. Sudhakara, M. C. Devendrachari, H. M. N. Kotresh, F. Khan, Phthalocyanine pendented polyaniline via amide linkage for an electrochemical sensing of H2O2, Microchem. J., 161 (2021) 105781.
  30. V. G. Sree, J. I. Sohn, H. Im, Pre-anodized graphite pencil electrode coated with a poly(thionine) film for simultaneous sensing of 3-nitrophenol and 4-nitrophenol in environmental water samples, Sensors, 22 (2022) 1151.
  31. A. Padmanaban, T. Dhanasekaran, R. Manigandan, S. P. Kumar, G. Gnanamoorthy, A. Stephen, V. Narayanan, Facile solvothermal decomposition synthesis of single phase ZnBi38O60 nanobundles for sensitive detection of 4-nitrophenol, New J. Chem., 41 (2017) 7020-7027. https://doi.org/10.1039/C7NJ00436B
  32. A. M. A. Aziz, H. H. Hassan, I. H. A. Badr, Activated glassy carbon electrode as an electrochemical sensing platform for the determination of 4-nitrophenol and dopamine in real samples, ACS Omega, 7 (2022) 34127-34135. https://doi.org/10.1021/acsomega.2c03427
  33. R. Krishnamoorthy, K. Muthumalai, T. Nagaraja, R. T. Rajendrakumar, S. R. Das, Chemically exfoliated titanium carbide MXene for highly sensitive electrochemical sensors for detection of 4-nitrophenols in drinking water, ACS Omega, 7 (2022) 42644-42654. https://doi.org/10.1021/acsomega.2c06505
  34. X. Nie, P. Deng, H. Wang, Y. Tang, An electrochemical sensor based on a nitrogen-doped carbon material and PEI composites for sensitive detection of 4-nitrophenol, Nanomaterials, 12 (2021) 86.
  35. N. Manjula, S. M. Chen, Simple strategy synthesis of manganese cobalt oxide anchored on graphene oxide composite as an efficient electrocatalyst for hazardous 4-nitrophenol detection in toxic tannery waste, Microchem. J., 168 (2021) 106514.
  36. V. A. Sajjan, S. Aralekallu, M. Nemakal, M. Palanna, C. P. K. Prabhu, L. Koodlur Sannegowda, Nanomolar detection of 4-nitrophenol using Schiff-base phthalocyanine, Microchem. J., 164 (2021) 105980.
  37. U. Chakraborty, G. Bhanjana, Kannu, N. Kaur, R. Sharma, G. Kaur, A. Kaushik, G. R. Chaudhary, Microwave-assisted assembly of Ag2O-ZnO composite nanocones for electrochemical detection of 4-Nitrophenol and assessment of their photocatalytic activity towards degradation of 4-Nitrophenol and Methylene blue dye, J. Hazard. Mater., 416 (2021) 125771.
  38. X. B. Joseph, J. C. Ezhilarasi, S. F. Wang, E. Elanthamilan, B. Sriram, J.P. Merlin, Fabrication of CO3O4 nanoparticle-decorated porous activated carbon electrode for the electrochemical detection of 4-nitrophenol, New J. Chem., 45 (2021) 18358-18365. https://doi.org/10.1039/D1NJ02642A
  39. R. Huang, D. Liao, Z. Liu, J. Yu, X. Jiang, Electrostatically assembling 2D hierarchical Nb2CTx and zifs-derivatives into Zn-Co-NC nanocage for the electrochemical detection of 4-nitrophenol, Sens. Actuators B Chem., 338 (2021) 129828.
  40. M. Faisal, M. M. Alam, J. Ahmed, A. M. Asiri, M. Jalalah, R. S. Alruwais, M. M. Rahman, F. A. Harraz, Sensitive electrochemical detection of 4-nitrophenol with PEDOT:PSS modified Pt NPs-embedded PPy-CB@ZnO nanocomposites, Biosensors, 12 (2022) 990.
  41. D. Ren, X. Wang, C. Leng, W. Meng, J. Zhang, C. Han, A highly sensitive electrochemical sensing platform based on p-doped Fe/Fe3O4@C for the detection of 4-nitrophenol, J. Electrochem. Soc., 169 (2022) 097501.
  42. B. Wang, Q. He, G. Li, Y. Long, G. Zhang, H. Liu, J. Liu, Sensitive determination of trace 4-nitrophenol in ambient environment using a glassy carbon electrode modified with formamide-converted nitrogen-doped carbon materials, Int. J. Mol. Sci., 23 (2022) 12182.
  43. R. Krishnamoorthy, K. Muthumalai, T. Nagaraja, R. T. Rajendrakumar, S. R. Das, Chemically exfoliated titanium carbide MXene for detection of 4-nitrophenols in drinking water, ACS Omega, 7 (2022) 42644-42654. https://doi.org/10.1021/acsomega.2c06505
  44. A. F. Baye, D. H. Han, S. K. Kassahun, R. A. Ntiamoah, H. Kim, Improving the reduction and sensing capability of Fe3O4 towards 4-nitrophenol by coupling with ZnO/Fe0/Fe3C/graphitic carbon using ZnFe-LDH@carbon as a template, Electrochim. Acta, 398 (2021) 139343.
  45. A. Umar, M. S. Akhtar, H. Algadi, A. A. Ibrahim, M. A. M. Alhamami, S. Baskoutas, Highly sensitive and selective eco-toxic 4-nitrophenol chemical sensor based on Ag-doped ZnO nanoflowers decorated with nanosheets, Molecules, 26 (2021) 4619.