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THE HARBOURNE-HIRSCHOWITZ CONDITION AND

THE ANTICANONICAL ORTHOGONAL PROPERTY

FOR SURFACES

Abel Castorena and Juan Bosco Fŕıas-Medina

Abstract. In this paper we give the first steps toward the study of the
Harbourne-Hirschowitz condition and the anticanonical orthogonal prop-

erty for regular surfaces. To do so, we consider the Kodaira dimension of

the surfaces and study the cases based on the Enriques-Kodaira classifi-
cation.

1. Introduction

In 1966, D. Mumford in his book “Lectures on Curves on an Algebraic Sur-
face” [19] proposed four lines of study for curves on a general surface. He called
“The problem of Riemann-Roch” to the first of these problems and stated the
following: given a curve C on a surface S, determine the dimension of the
complete linear system of curves containing C. Mumford pointed out that this
problem is equivalent to the problem of computing the dimension of the zeroth
cohomology group associated with the line bundle OS(C) on S. To do so, one
can use the Riemann-Roch theorem: for the line bundle L := OS(D) associated
with a divisor D on a surface S, we have that

h0(S,OS(D))− h1(S,OS(D)) + h2(S,OS(D)) = pa(S) + 1 +
1

2
(D2 −KS ·D),

here, for i = 0, 1, 2, hi(S,OS(D)) denotes the dimension of the i-th coho-
mology group Hi(S,L), pa(S) denotes the arithmetic genus of S and KS de-
notes a canonical divisor on S. So, to compute explicitly the dimension of
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H0(S,OS(D)), one has to compute the dimension of the other cohomology
groups and the arithmetic genus of the surface.

It is well-known (see for example, [3, Chapter VI]) that complex algebraic
surfaces are classified by the Enriques-Kodaira classification depending on their
Kodaira dimension. Indeed, if S is a minimal algebraic surface and κ(S) denotes
its Kodaira dimension, then one of the following occurs:

a) κ(S) = −∞, so S is a minimal rational surface or a ruled surface over
a curve of positive genus (recall that the minimal surfaces of class VII
are never algebraic).

b) κ(S) = 0, so S is one of the following: an Enriques surface, a bielliptic
surface, a Kodaira surface (primary or secondary), a K3 surface, or a
tori.

c) κ(S) = 1, so S is a minimal properly elliptic fibration.
d) κ(S) = 2, so S is a minimal surface of general type.

In [13], B. Harbourne considered the following situation in the case of ra-
tional surfaces: let S = Sn → Sn−1 → · · · → S1 → S0 = P2 be a composi-
tion of morphisms, where Si → Si−1 is the blow-up at a point pi ∈ Si−1 for
i = 1, . . . , n. Note that the pi’s could be infinitely near points. We say that the
points {pi}ni=1 are in good position if the surface S obtained by blow-ups the
points p1, . . . , pn has no irregular effective nef divisor classes, that is, if D is an
effective nef divisor on S, then h1(S,OS(D)) = 0. Since for a rational surface S
we have that pa(S) = 0, the property of having points in good position implies
that the dimension of H0(S,OS(D)) can be computed for any divisor class
on S (see for example [9, Theorem 3]) and so, one can solve the problem of
Riemann-Roch in this case. Nowadays, it is conjectured that this fact hold if S
is a blow-up of P2 at “sufficiently general points”. Such conjecture was stated
in equivalent forms by Harbourne in [12], A. Hirschowitz in [15], B. Segre in
[20] and A. Gimigliano in [11], and it is known as the Harbourne-Hirschowitz
conjecture or Segre-Harbourne-Gimigliano-Hirschowitz conjecture.

Another important problem involving the first cohomology group appears
in the context of the deformation theory of Hilbert schemes of divisors on
surfaces. For an effective divisor D0 on a surface S, we denote by HD0,S the
Hilbert scheme of all effective divisors on S that are algebraically equivalent to
D0. The obstruction space to the deformation theory HD0,S is induced by the
long exact sequence in cohomology associated with the sequence

0 → OS → OS(D0) → OD0
(D0) → 0.

More precisely, the obstruction space of the functor HD0,S is given by

K1 = Im
(
H1(S,OS(D0)) → H1(D0,OD0(D0))

)
.

The divisor D0 is semiregular if K1 = 0. In such case, we have that HD0,S

is scheme-theoretically smooth at D0 of dimension equal to h0(D0,OD0
(D0)).

See [10] for all the details in this construction. In addition, in the context of
rigid divisors [16] it is relevant the study of some first cohomology groups.
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Motivated by the concept of points in good position, the second author along
with M. Lahyane introduced in [8] a natural generalization of this notion for
any surface:

Definition 1.1. A smooth projective surface S is a Harbourne-Hirschowitz
surface (HH surface for short) if for every effective nef divisor D on S we have
that h1(S,OS(D)) = 0.

We will also refer to the requirement of the above definition as theHarbourne-
Hirschowitz condition. Note that in the case of dealing with a Harbourne-
Hirschowitz surface S, we always have the semiregular condition for every ef-
fective nef divisor on S.

Along with the concept of Harbourne-Hirschowitz surfaces, in the same work
[8] the following notion was introduced:

Definition 1.2. A smooth projective surface S satisfies the anticanonical or-
thogonal property (AOP for short) if for every nef divisor D on S, the equality
−KS ·D = 0 implies that D = 0.

Similarly, we refer to the requirement of this definition as the AOP condi-
tion. This concept was introduced in general but was used in the context of
anticanonical rational surfaces, indeed, the interest of having an anticanonical
rational surface S satisfying the AOP condition is that such surface will be a
Harbourne-Hirschowitz surface ([8, Theorem 2.5]).

The aim of this work is to give the first steps toward the study of the
Harbourne-Hirschowitz surface and the anticanonical orthogonal property
based on the Enriques-Kodaira classification. We restrict ourselves to the case
of regular surfaces, this will be justified in the next section. The paper is orga-
nized as follows. In Section 2 we review some properties in the general context
of the Harbourne-Hirschowitz surfaces and the surfaces that satisfy the anti-
canonical orthogonal property. In Sections 3, 4 and 5 we study these properties
for surfaces whose Kodaira dimension is equal to 2, 1 and 0, respectively. Fi-
nally, in Section 6 we study the case of surfaces of Kodaira dimension −∞,
and more precisely, the rational surfaces. This case is where the Harbourne-
Hirschowitz surfaces and anticanonical orthogonal property are more natural
and interesting to study.

2. Harbourne-Hirschowitz surfaces and the anticanonical
orthogonal property

In this section we review some properties of Harbourne-Hirschowitz surfaces
and surfaces satisfying the anticanonical orthogonal property. Throughout this
paper will work over the field of complex numbers C and we will assume that
all the surfaces are smooth.

Let S be a HH surface and let D be any effective nef divisor on S. Consider
the following exact sequence:

0 → OS(−D) → OS → OD → 0.
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Since h1(S,OS(D)) = 0 = h1(S,OS(KS −D)), from cohomology one has the
following sequence:

0 → H0(S,OS(KS −D)) → H0(S,OS(KS)) → H0(D,OD(KS)) → 0.

Since pg(S) = h2(S,OS) = h0(S,OS(KS)), then

pg(S) = h0(S,OS(KS −D)) + h0(D,OD(KS)).

So, on a Harbourne-Hirschowitz surface we have that the geometric genus
pg(S) can be written as the sum of the dimensions of the cohomology groups
H0(S,OS(KS −D)) and H0(D,OD(KS)).

Remark 2.1. If S is a HH surface, then S is a regular surface. Indeed, since the
zero divisor D = 0 is nef and effective, the hypothesis of being a HH surface
implies that h1(S,OS(D)) = h1(S,OS) = 0. Therefore, S is regular.

Note that both HH and AOP conditions cannot be ensured by blow-up a
surface which satisfy these properties. For example, consider a rational sur-
face S with K2

S = 1, this surface satisfies the HH and AOP conditions (see
Proposition 6.1 below). If we blow-up such surface at a point, we will obtain
a rational surface S′ with K2

S′ = 0 and in general, we may lose the fulfillment
of the HH and AOP conditions (see Theorem 6.2 below). However, below we
prove that both conditions could be preserved under certain morphisms if the
domain satisfies such properties.

Proposition 2.2. Let π : S → T be the blow-up of T at a point. If S is a HH
surface, then T also is a HH surface. In particular, the result holds if π is a
birational morphism.

Proof. Let D be an effective nef divisor on T . The induced application π∗ :
Pic(T ) → Pic(S) preserves the effectiveness and nefness of a divisor, then we
have that D′ = π∗(D) is an effective nef divisor on S. Since S is a HH surface,
then h1(S,OS(D

′)) = 0.
On the other hand, since the dimension of the cohomology groups are pre-

served under π∗ (see for example [13, Lemma 3(b)]), we have the equality
h1(T,OT (D)) = h1(S,OS(D

′)) = 0. Therefore, T is a HH surface. □

Proposition 2.3. Let π : S → T be a dominant morphism such that contracts
the ramification divisor to points. If S satisfies the AOP condition, then T also
satisfies the AOP condition.

Proof. Denote by R the ramification divisor associated with π. Let D be a
nef divisor on T such that −KT ·D = 0. Note that π∗(D) is a nef divisor on
S. Using the fact that −KS = π∗(−KT ) − R, the projection formula and the
hypothesis that the morphism π contracts R to points, we have that

−KS ·π∗(D) = π∗(−KS)·D = π∗
(
π∗(−KT )−R

)
·D = −KT ·D+π∗(R)·D = 0.

The hypothesis implies that π∗(D) = 0 and since π∗ is an injective application,
we conclude that D = 0. □
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Remark 2.4. If π : S → T is the blow-up of T at a point or more general, a
birational morphism, and if S satisfies the AOP condition, then T also satisfies
the AOP condition. This result was previously proved in [9].

Remark 2.5. The adjunction formula also gives a criterion that ensures when
a surface S does not satisfy the AOP condition: if there exists a nonsingular
curve such that C2 = 0 and pa(C) = 1, then S does not satisfy AOP.

Note that Remark 2.1 tells us that regular surfaces are the correct ones to
study the HH condition and a priori the regularity of the surface is not related
with the AOP condition. The original motivation of this study came from
the study of rational surfaces, they are always regular surfaces and we have the
property that being numerically trivial implies that we are dealing with the zero
divisor. In particular, such property enables one to study the AOP condition
using divisor classes on the Néron-Severi group instead of study directly the
divisors. In order to follow this original motivation, we restrict ourselves to
the case of regular surfaces although the regularity of a surface does not imply
that the numerical and linear equivalences coincide.

3. Kodaira dimension 2

Let S be a minimal surface of general type. One has that KS is nef and
K2

S ≥ 1. From Proposition 1 in [6] we have that if C is an irreducible curve on
S, then KS · C ≥ 0, and if KS · C = 0, then C2 = −2 and C is smooth and
rational. Moreover the set of curves E with KS · E = 0 form a finite set and
they are numerically independents on S. From this result we have in particular
that if S is regular and has no torsion, then it satisfies the AOP condition.

Proposition 3.1. Let S be a minimal surface of general type with q = 0. If S
has no torsion, then S satisfies the AOP condition.

Proof. Let D be a nef divisor on S such that KS ·D = 0. Note that D2 ≥ 0
and that |mKS | ≠ ∅ for a sufficiently large m. Consider the decomposition of
|mKS | in its mobile part |H| and its fixed part |F |:

|mKS | = |H|+ |F |.

Using the fact that S is a surface of general type we have that H2 > 0 for
sufficiently large m. On the other hand, the hypothesis D nef implies

D ·H = D · (mKS − F ) = mKS ·D −D · F = −D · F ≤ 0.

Thus, D · H ≥ 0 and we have that D · H = 0. Since H2 > 0 and D · H =
0, Hodge Index Theorem implies D2 ≤ 0 and since D2 ≥ 0, it follows that
D is numerically trivial. The condition that S has no torsion implies that
Pic(S) has no torsion. Then, since the torsion subgroup consists of numerically
trivial classes, we have that the only numerically trivial class is the trivial one.
Therefore, we conclude that D is the zero divisor. □
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The study of surfaces of general type is an active field of study nowadays
and we are not aware of an example of a regular surface of general type that
satisfies the HH condition. We will study concrete cases in a future work.

On the other hand, recall that one of the importance of the HH condition is
to compute explicitly the dimension of the complete linear systems on a surface.
In the case of surfaces of general type with q = 0, the vanishing of the first
cohomology group may be not enough to make such computation. By Serre
duality we have that h2(S,OS(D)) = h0(S,OS(KS −D)). At the same time,
since KS is a non-zero nef divisor, it may occur that the latter cohomology
group does not vanish, for example, there exists a minimal surfaces of general
type S with pg = 3, q = 0 and such that |KS | has a non-trivial fixed part (see
[5, Theorem 4]).

4. Kodaira dimension 1

Recall that if S is a surface whose Kodaira dimension is equal to 1, then the
canonical divisor KS is nef and K2

S = 0. Since there exists a large enough n
such that nKS is non-trivial, an immediate consequence of this is the following:

Theorem 4.1. Let S be a surface whose Kodaira dimension is equal to one.
Then, S does not satisfy the AOP condition.

On the other hand, since every surface whose Kodaira dimension is equal to
1 is an elliptic surface, we prove that the HH condition does not hold.

Theorem 4.2. Let S be a regular surface whose Kodaira dimension is equal
to one. Then, S does not satisfy the HH condition.

Proof. In [10, Section 4], Friedman and Morgan characterized the divisors D
with the property h1(S,OS(D)) = 0 in the case of a regular elliptic surface.
Such divisors are numerically equivalent to 1−r

2 KS for some rational number
r ≤ 1. In particular, the condition D ·KS = 0 should be satisfied. Since the
latter conditions is not satisfied in general, we concluded that the HH condition
does not hold. □

In spite of the above results, Friedman and Morgan computed in [10, Lemma
4.1] the dimensions of the cohomology groups for regular elliptic surfaces. In
fact, one can note that the dimension of the first cohomology group can be
different from zero.

Theorem 4.3 (Friedman-Morgan). Let S be a regular elliptic surface and let
D = af +

∑
i biFi, where a ≥ 0 and 0 ≤ bi ≤ mi − 1. Here, f is the divisor

class of a general fiber, the Fi’s denote the multiple fibers and the mi denotes
the multiplicity of Fi. Then

h0(S,OS(D)) = a+ 1;

h1(S,OS(D)) =

{
0 if a ≤ pg

a− pg if a > pg
; h2(S,OS(D)) =

{
pg − a if a ≤ pg

0 if a > pg.
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5. Kodaira dimension 0

The regular surfaces with Kodaira dimension zero are the K3 surfaces and
Enriques surfaces. In both classes of surfaces, the canonical divisor is nef.
Firstly, we deal with the AOP condition.

Theorem 5.1. Let S be a K3 or an Enriques surface. Then, S does not satisfy
the AOP condition.

Proof. Assume that S is a K3 surface. In this case, the canonical divisor is
trivial. So, if H is an ample divisor, then H ·KS = 0 but H ̸= 0.

Now, assume that S is an Enriques surface. So, the canonical divisor KS is
a non-trivial nef divisor and satisfies K2

S = 0. □

Next, we review the HH condition. Knutsen and Lopez gave in [18] a vanish-
ing theorem for H1(S,L), where L is a line bundle on S, that gives necessarily
and sufficient conditions for K3 and Enriques surfaces:

Theorem 5.2 (Knutsen-Lopez). Let S be a K3 or an Enriques surface and
let L be a line bundle on S such that L > 0 and L2 ≥ 0. Then H1(S,L) ̸= 0 if
and only if one of the following occurs:

(i) L ∼ nE for E > 0 nef and primitive with E2 = 0, n ≥ 2 and h1(S,L) =
n− 1 if S is a K3 surface, h1(S,L) = ⌊n

2 ⌋ if S is an Enriques surface;

(ii) L ∼ nE + KS for E > 0 nef and primitive with E2 = 0, S is an
Enriques surface, n ≥ 3 and h1(S,L) = ⌊n−1

2 ⌋;
(iii) there is a divisor ∆ > 0 such that ∆2 = −2 and ∆ · L ≤ −2.

Using the above result, we will provide a classification for the K3 surfaces
that satisfy the HH condition and we will prove that Enriques surfaces never
satisfy the HH condition.

Theorem 5.3. Let S be a K3. The following statements are equivalent:

(1) S does not satisfy the HH condition.
(2) There exists a non-trivial effective nef divisor D such that D2 = 0.
(3) S admits an elliptic fibration.

Proof. (1) ⇒ (2) Assume that S does not satisfy HH. So, there exists a non-
trivial effective nef divisor D such that H1(S,OS(D)) ̸= 0. Since D is nef, by
Theorem 5.2 there exists a nef and primitive divisor E > 0 such that E2 = 0
and D ∼ nE for some n ≥ 2. In particular, D2 = 0.

(2) ⇒ (3) Let D be a non-trivial effective nef divisor D2 = 0. By [17,
Proposition 2.3.10], there exists a smooth irreducible elliptic curve E such that
D ∼ mE for some m > 0. Such curve E induces the elliptic fibration.

(3) ⇒ (1) Assume that S admits an elliptic fibration. Then, by [17, Propo-
sition 11.1.3] there exists a non-trivial divisor L such that L2 = 0. Moreover,
there exists a non-trivial nef divisor D such that D2 = 0 by [17, Remark 8.2.13].
Therefore, by [17, Proposition 2.3.10] there exists a smooth irreducible elliptic
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curve E such that D ∼ mE for some m > 0. Finally, since a smooth irreducible
elliptic curve is primitive, we are able to construct non-trivial nef divisors as
in (i) of Theorem 5.2. □

Example 5.4. The Fermat quartic S in P3 given by the equation

x4
0 + x4

1 + x4
2 + x4

3 = 0

is not a HH surface. Indeed, one can take the line ℓ ⊂ S given by x1 = ξx0

and x3 = ξx2, where ξ is a primitive eight root of the unity. Projecting S
with center ℓ onto a disjoint line in P3, one can construct an elliptic fibration
explicitly (see [17, Example 2.3.11]).

Theorem 5.5. Let S be a K3 HH surface. Let D be a divisor on S and write
D = M + F , where M is the mobile part of D and F is the fixed part of D.
Then,

h0(S,OS(D)) =


0 if D is not effective,

1 if M = 0,

2 + M2

2 otherwise.

Proof. If D is not effective, then it is clear that OS(D) has no global sections
and consequently h0(S,OS(D)) = 0. If D does not have mobile part, then
D = F and then h0(S,OS(D)) = 1.

Now, assume that D is an effective divisor and M ̸= 0. We have that M is a
non-zero effective nef divisor such that h0(S,OS(D)) = h0(S,OS(M)), so lets
compute the dimension of the space of global sections associated with M . Since
KS is trivial we have that h2(S,OS(D)) = h0(S,OS(−D)) = 0 and using the
hypothesis that S is Harbourne-Hirschowitz we have that h1(S,OS(D)) = 0.
We conclude the result by Riemann-Roch theorem. □

Theorem 5.6. Let S be an Enriques surface. Then, S does not satisfy the HH
condition.

Proof. Since every Enriques surface admits an elliptic fibration (see for example
[3, Theorem 17.5] or [2, Theorem 10.17]), we can consider a smooth irreducible
elliptic curve E on S. So, we can construct non-trivial nef divisors as in (i) or
(ii) of Theorem 5.2 such that the dimension of their first cohomology groups is
non-zero. □

In spite of the above result, there are nef divisors on an Enriques surfaces
that satisfy the vanishing of the first cohomology group: if D is a nef divisor
such that D2 ≥ 2, then h1(S,OS(D)) = 0 (see [7, Section 4]). On the other
hand, since Enriques surfaces are elliptic surfaces of genus zero, the dimension
of the cohomology groups can be calculated explicitly, see Theorem 4.3 in the
previous section.
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6. Kodaira dimension −∞

Surfaces with Kodaira dimension equal to −∞ are the rational surfaces and
the ruled surfaces. Consider a ruled surface S over a curve C of genus g.
In this case, the irregularity of S depends on the genus of the curve C (see
[4, Proposition III.21]):

h1(S,OS) = g(C).

So, if S is a regular ruled surface, then necessarily g(C) = 0 and S is a Hirze-
bruch surface. Therefore, the only possible regular surfaces with Kodaira di-
mension equal to −∞ are the rational surfaces. Therefore, from now on we
focus our attention on the rational surfaces.

Let S be a rational surface. For convenience of the reader, we remind some
notions that will be considered in this section. A divisor D on S is regular
if H1(S,OS(D)) = 0, otherwise D is an irregular divisor. The Néron-Severi
group NS(S) is the quotient group of the group of Cartier divisors on S modulo
numerical equivalence. It is well-known that NS(S) is a free finitely generated
Z-module and that coincides with the Picard group of S. The Picard number
of S is the rank of the Néron-Severi group. We denote by KS the class of a
canonical divisor on NS(S) and will be called the canonical class. The surface
S is anticanonical if there exists an effective anticanonical divisor on S.

The strategy in this case is to divide the study depending on the self-
intersection of KS . The first case to consider is when K2

S > 0 and here we
have a positive answer for the HH and AOP conditions.

Proposition 6.1. Let S be a rational surface such that K2
S > 0. Then, S is a

HH surface and satisfies the AOP condition.

Proof. Let D be a nef divisor on S such that −KS ·D = 0. Since D is nef, then
D2 ≥ 0. Hodge Index theorem implies that D2 ≤ 0, moreover, since D2 = 0
then D is numerically trivial. Therefore, D = 0. This proves that S satisfies
the AOP condition.

Now, let F be a nef divisor on S. Since S is rational andK2
S > 0 we have that

F is also effective. If −KS ·F = 0, by the above argument we have that F = 0
and then h1(S,OS(F )) = h1(S,OS) = 0 since S is regular. If −KS · F > 0,
then [14, Theorem III.1(a) and (b)] imply that h1(S,OS(F )) = 0. Thus, we
conclude that S is a Harbourne-Hirschowitz surface. □

Next, we consider the case when K2
S = 0. For this case, the answer depends

entirely on the multiples of −KS , in fact, Harbourne proved in [13, Corollary
10] the following result for the HH condition and the same argument can be
applied to obtain an answer for the AOP condition.

Theorem 6.2 (Harbourne). Let S be a rational surface such that K2
S = 0.

The following statements are equivalent:

(1) S does not satisfy the HH condition (respectively, does not satisfy the
AOP condition).
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(2) There exists r > 0 such that −rKS is an irregular nef divisor (respect-
ively, is a nef divisor).

Proof. Since S is rational and K2
S = 0, then S is anticanonical, moreover, we

have that every nef class also is an effective class. Let F be a nef divisor
on S. By [14, Theorem III(a) and (b)], we have that if −KS · F > 0, then
h1(S,OS(F )) = 0. So, the only possibility for a nef class to be irregular is that
it is orthogonal to −KS . Also, since K2

S = 0, by [14, Lemma II.4] we have that
−KS ·F = 0 and F 2 = 0 imply that F is a multiple of −KS . The result follows
from these facts. □

In particular, this result gives a criterion to ensure the HH and AOP condi-
tions when K2 = 0.

Example 6.3. Let S be an elliptic rational surface, that is, there exists a
morphism ρ : S → P1 whose general fiber is a smooth curve of genus one. In
this case, S is never a HH surface nor satisfies the AOP condition. Indeed, if D
is a nef divisor on S such that −KS .D = 0, then there exists a positive integer
n such that D ∼ −nKS and h1(S,OS(D)) = n, see [1, Proposition 1.2].

Finally, the last case to consider is when K2
S < 0. In such situation, the

surface can be anticanonical or not, we focus our attention in the anticanonical
case. Even in such case, both HH and AOP conditions may fail in general.

Example 6.4. Let π : S̃ → S be the blow-up of a rational elliptic surface S at
one point. Consider a nef divisor D on S which is orthogonal to −KS . As we
pointed out in the previous example, there exists a positive integer such that
D ∼ −nKS and h1(S,OS(D)) = n. The pull-back π∗(D) of D is a nef divisor

on S̃ and satisfies h1(S̃,OS̃(π
∗(D))) = h1(S,OS(D)) = n. So, S̃ is not a HH

surface.

Example 6.5. Consider the following configuration on P2. Let Lp, Lq and Lr

be three lines that are not concurrent at one point. Consider points p1, p2, p3 ∈
Lp, q1, q2, q3 ∈ Lq and r1, r2, r3, r4 ∈ Lr such that the points are different from
the intersection points of the lines (see Figure 1). Let T be the blow-up of P2

at these 10 points.
We claim that T does not satisfy the AOP condition. In fact, consider the

divisor class

D = 4H− Ep1
− Ep2

− 2Ep3
− Eq1 − Eq2 − 2Eq3 − Er1 − Er2 − Er3 − Er4 .

This class corresponds to the strict transform of the divisor Lp+Lq+Lr+Lp3q3

on P2, where Lp3q3 denotes the line passing through p3 and q3. This is a nef
class since the intersection of D with each of its irreducible components is zero
and it is orthogonal to −KT .

On the other hand, we have the following criterion proved in [8, Theorem
2.5] which relates the AOP and HH conditions:
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Figure 1. Configuration of points which defines the surface T .

Proposition 6.6. Let S be an anticanonical rational surface. If S satisfies the
AOP condition, then S is a HH surface.

The key result used in the latter is due to Harbourne [14, Theorem III.1]
in which he proved that if a nef class intersects the anticanonical class non-
negatively, then the dimension of its first cohomology group is equal to zero.

So, it remains to determine if the other implication holds true, that is, if S
is a HH surface, then it satisfies the AOP condition. In an equivalent way, we
want to prove that if S does not satisfy the AOP condition, then it is not a
HH surface. In fact, since on an anticanonical rational surface any nef divisor
intersecting an anticanonical divisor positively is a regular one, then the only
case in which the HH condition could fail is when a non-trivial nef divisor is
orthogonal to an anticanonical divisor.

In one of the results of [14], Harbourne studied the properties of nef classes
depending on their intersection with the anticanonical class. Particularly, he
obtained the following for those nef classes that are orthogonal to the anti-
canonical class:

Theorem 6.7 (Harbourne). Let S be an anticanonical rational surface, F be
a nef divisor class and let D be a non-zero section of −KS. Consider F =
H+N , where H and N are the classes of the free part and the fixed part of F
respectively. If −KS · F = 0, then either:

(1) N = 0 in which case the sections of F are base point free, F ⊗ OD is
trivial and either
(1.1) F2 > 0 and h1(S,OS(F)) = 1, or
(1.2) F = rC and h1(S,OS(F)) = r, where r > 0 and C is a class of

self-intersection equal to zero whose general section is reduced and
irreducible.

(2) N is a smooth rational curve of self-intersection −2 in which case
h1(S,OS(F)) = 1, N ⊗ OD is trivial, and H = rC, where r > 1
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and C is reduced and irreducible with C2 = 0, C · N = 1 and C ⊗ OD

being trivial.
(3) N +KS is an effective class.

Moreover, (3) occurs if and only if F · D = 0 but F ⊗ OD is non-trivial.
In this case, there exists a birational morphism of S to a smooth projective
anticanonical rational surface T where one of the following occurs:

(a) K2
T < 0, there is a nef class F ′ on T , F is the pull-back of F ′ − KT

and h1(S,OS(F)) = h1(S,OT (F ′)) = 0, or
(b) K2

T = 0, H and N are the pull-backs of −sKT and −rKT for some
integers s ≥ 0 and r > 0, respectively, and h1(S,OS(F)) = σ, where
σ = 0 if s = 0, and otherwise r < τ and σ = s/τ , where τ is the least
positive integer such that the restriction of −τKS to D is trivial.

The last result implies that if S is an anticanonical rational surface which
does not satisfy the AOP condition, then there are cases when the regularity of
nef divisors may fail but also there are cases when the regularity may hold true.
So, in the following result we study the HH anticanonical rational surfaces for
which the AOP condition fails. First, we need the following lemma:

Lemma 6.8. Let π : S → T be a birational morphism where S and T are
anticanonical rational surfaces and K2

T < 0. Let F be a non-zero nef class on
S such that −KS · F = 0. Assume that there exists a nef class F ′ on T such
that F = π∗(F ′ −KT ). Then T does not satisfy the AOP condition.

Proof. Since π : S → T is a birational morphism, then π can be written as a
composition of a finite number of blow-ups, namely,

S = Tn

π

33
πn // Tn−1

πn−1 // Tn−2

πn−2 // · · · π2 // T1
π1 // T0 = T,

where for every i = 1, . . . , n, πi : Ti → Ti−1 is a blow-up at one point and Ti−1

is an anticanonical rational surface such that K2
Ti−1

< 0. Then, the equation

F = π∗(F ′ −KT ) can be written as

(1) F = π∗
n ◦ π∗

n−1 ◦ · · · ◦ π∗
2 ◦ π∗

1(F ′ −KT ).

We will prove that the divisor class F ′ − KT implies the failure of the AOP
condition on T .

• F ′ − KT is a non-zero nef class. If F ′ − KT = 0, we would have that
F ′ = KT but this is impossible because F ′ is a nef class. Now, consider an
effective class C on T . Since a blow-up preserves the effectiveness of a divisor
class, then it follows that

π∗
i ◦ π∗

i−1 ◦ · · · ◦ π∗
2 ◦ π∗

1(C)

is an effective class on Ti for every i = 1, . . . , n. Using the fact that the
intersection number is preserved by pull-backs of a blow-up and Equation (1),
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we have that

C · (F ′ −KT ) = (π∗
1(C)) · (π∗

1(F ′ −KT ))

= (π∗
2 ◦ π∗

1(C)) · (π∗
2 ◦ π∗

1(F ′ −KT ))

...

= (π∗
n ◦ · · · ◦ π∗

1(C)) · (π∗
n ◦ · · · ◦ π∗

1(F ′ −KT ))

= (π∗
n ◦ · · · ◦ π∗

1(C)) · F ,

and the last quantity is non-negative because F is a nef divisor class. Thus,
F ′ −KT is a non-zero nef class on T .

• F ′ −KT is orthogonal to −KT . Denote by Ei the class of the exceptional
divisor of the blow-up πi : Ti → Ti−1 for i = 1, . . . , n. The idea to prove
that −KT · (F ′ −KT ) = 0 is to use recursively that the intersection number is
preserved under the pull-back of a blow-up. First, lets note that

−KT · (F ′ −KT ) = π∗
1(−KT ) · π∗

1(F ′ −KT )

= (−KT1
+ E1) · (π∗

1(F ′ −KT ))

= (−KT1
· π∗

1(F ′ −KT )) + (E1 · π∗
1(F ′ −KT ))

= −KT1 · π∗
1(F ′ −KT ).

Now, we can calculate the intersection number −KT1 · π∗
1(F ′ − KT ) using the

second blow-up:

−KT1 · π∗
1(F ′ −KT ) = (π∗

2(−KT1)) · (π∗
2 ◦ π∗

1(F ′ −KT ))

= (−KT2
+ E2) · (π∗

2 ◦ π∗
1(F ′ −KT ))

= (−KT2
· π∗

2 ◦ π∗
1(F ′ −KT )) + (E2 · π∗

2 ◦ π∗
1(F ′ −KT ))

= −KT2 · π∗
2 ◦ π∗

1(F ′ −KT ).

So, we have that

−KT · (F ′ −KT ) = −KT1
· π∗

1(F ′ −KT ) = −KT2
· π∗

2 ◦ π∗
1(F ′ −KT ).

Using recursively this argument, we have that for every i = 1, . . . , n − 1, it
occurs that

−KTi · π∗
i ◦ · · · ◦ π∗

1(F ′ −KT ) = −KTi+1 · π∗
i+1 ◦ π∗

i ◦ · · · ◦ π∗
1(F ′ −KT ),

and consequently

−KT · (F ′ −KT ) = −KT1
· π∗

1(F ′ −KT )

= · · ·
= −KTn · π∗

n ◦ · · · ◦ π∗
1(F ′ −KT )

= −KS · F = 0.

Therefore, we have the existence of a non-zero nef class on T that is orthogonal
to −KT . We conclude that T does not satisfy the AOP condition. □
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Remark 6.9. The conditions of the previous lemma does not characterize the
surfaces that does not satisfy the AOP condition. In fact, consider the con-
figuration of Example 6.5 that defines the surface T and add another point r5
on the line Lr. Let S be the surface obtained from the blow-up of P2 at this
configuration of 11 points. So, we have a birational morphism π : S → T , both
surfaces are anticanonical and K2

T < 0. We have that the class D on T is a
non-zero nef class that is orthogonal to −KT . Thus, we have that F = π∗(D)
is a non-zero nef class on S such that −KS · F = 0, this implies that S does

not satisfy AOP. However, in this case we have that D = L̃p3q3 −KT and L̃p3q3

is the class of a (−1)-curve, which is not a nef class.

Now, we present our main result for anticanonical rational surfaces that
satisfy the Harbourne-Hirschowitz condition but that do not satisfy the anti-
canonical orthogonal property.

Theorem 6.10. Let S be a HH anticanonical rational surface with K2
S < 0. If

S does not satisfy the AOP condition, then there exists a birational morphism
π : S → T , where T is a HH anticanonical rational surface with K2

T = 0 and
does not satisfy the AOP condition.

Proof. Since S does not satisfies the AOP condition, there exists a non-zero nef
divisor F on S such that −KS .F = 0. Since in an anticanonical rational surface
every nef divisor is effective and S is a HH surface, we have that h1(S,OS(F )) =
0. Consider the class F of F and take F = H+N , where H is the class of the
free part of F and N the class of the fixed part. Using Theorem 6.7 we have
that cases (1) and (2) cannot happen, then the only possibility is case (3), i.e.,
N +KS is an effective class. Consequently, there exists a birational morphism
π : S → T , where T is an anticanonical rational surface and by Proposition 2.2
we have that T is also a HH surface. According to Theorem 6.7, there exist
two possible cases:

Case (a): K2
T < 0. In such case, there exists a nef class F ′ in T such that

π∗(F ′−KT ) = F . Moreover, we have that h1(T,OT (F ′)) = h1(S,OS(F)) = 0,
but this is a consequence of the hypothesis S is HH. Using Lemma 6.8, we
have that T does not satisfies the AOP condition. In addition, we have that
the Picard number of T is smaller than the Picard number of S since π is a
composition of blow-ups. So, we have that T is a HH anticanonical rational
surface, K2

T < 0 and T does not satisfy the AOP condition, that is, we are in
the initial setting. Also, note that K2

S < K2
T < 0. Thus, we can apply the same

argument and since the rank of the Picard group is finite, at some point we
have to reach the second possibility of Theorem 6.7.

Case (b): K2
T = 0. In this case, we have the existence of integer numbers

s ≥ 0 and r > 0 such that H = π∗(−sKT ) and N = π∗(−rKT ). Note that
since h1(S,OS(F )) = 0 it occurs that s = 0 and then F = π∗(−rKT ). In
addition, we have that −rKT is a non-zero nef class: if C is the class of an
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effective divisor, then

−rKT · C = π∗(−rKT ) · π∗(C) = F · π∗(C) ≥ 0

since π∗(C) is an effective class and F is a nef class on S. Finally, the condition
K2

T = 0 implies that −rKT is a non-zero nef divisor that is orthogonal to −KT

and we conclude the result. □

As we mention in the introduction, the Harbourne-Hirschowitz conjecture,
or Segre-Harbourne-Gimigliano-Hirschowitz conjecture, is an open problem
of great interest nowadays. Because of this, the classification of Harbourne-
Hirschowitz anticanonical rational surfaces remains open. To the best of our
knowledge, the known examples of anticanonical rational surfaces that are
Harbourne-Hirschowitz also satisfy the AOP condition. Examples of ratio-
nal surfaces that satisfy the HH condition but not the AOP condition will be
part of a future research project.
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[2] L. Bădescu, Algebraic Surfaces, Springer-Verlag, New York, 2001. https://doi.org/10.
1007/978-1-4757-3512-3

[3] W. P. Barth, K. Hulek, C. A. M. Peters, and A. Van de Ven, Compact complex surfaces,

second edition, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series
of Modern Surveys in Mathematics, 4, Springer-Verlag, Berlin, 2004. https://doi.org/

10.1007/978-3-642-57739-0

[4] A. Beauville, Complex Algebraic Surfaces, Cambridge University Press, Cambridge,
1996. https://doi.org/10.1017/CBO9780511623936

[5] N. Bin, Some examples of algebraic surfaces with canonical map of degree 20, C. R.

Math. Acad. Sci. Paris 359 (2021), 1145–1153.

[6] E. Bombieri, Canonical models of surfaces of general type, Inst. Hautes Études Sci.
Publ. Math. No. 42 (1973), 171–219.

[7] I. V. Dolgachev, A brief introduction to Enriques surfaces, in Development of moduli

theory—Kyoto 2013, 1–32, Adv. Stud. Pure Math., 69, Math. Soc. Japan, 2016. https:
//doi.org/10.2969/aspm/06910001

[8] J. B. Fŕıas-Medina and M. Lahyane, Harbourne-Hirschowitz surfaces whose anticanoni-

cal divisors consist only of three irreducible components, Int. J. Math. 29 (2018), no. 12,
1850072, 19 pp. https://doi.org/10.1142/S0129167X18500726
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