과제정보
This work was financially supported by NSF of China (No.11971152) and NSF of Henan Province (202300410167).
참고문헌
- M. M. Akhmatov and A. P. Oskolkov, Convergence difference schemes for equations of motion of an Oldroyd fluid, J. Soviet Math. 47 (1989), no. 6, 2926-2933; translated from Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 159 (1987), Chisl. Metody i Voprosy Organiz. Vychisl. 8, 143-152, 179. https://doi.org/10.1007/BF01305224
- J. R. Cannon, R. E. Ewing, Y. He, and Y. Lin, A modified nonlinear Galerkin method for the viscoelastic fluid motion equations, Internat. J. Engrg. Sci. 37 (1999), no. 13, 1643-1662. https://doi.org/10.1016/S0020-7225(98)00142-6
- E. Erturk, T. C. Corke, and C. GAokc Aol, Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers, Int. J. Numer Meth Fl. 48 (2005), 747-774. https://doi.org/10.1002/fld.953
- L. Ge, H. Niu, and J. Zhou, Convergence analysis and error estimate for distributed optimal control problems governed by Stokes equations with velocity-constraint, Adv. Appl. Math. Mech. 14 (2022), no. 1, 33-55. https://doi.org/10.4208/aamm.oa-2020-0302
- U. Ghia, K. N. Ghia, and C. T. Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phy. 48 (1982), 387-411. https://doi.org/10.1016/0021-9991(82)90058-4
- F. X. Giraldo, M. Restelli, and M. Lauter, Semi-implicit formulations of the NavierStokes equations: application to nonhydrostatic atmospheric modeling, SIAM J. Sci. Comput. 32 (2010), no. 6, 3394-3425. https://doi.org/10.1137/090775889
- V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, 5, Springer-Verlag, Berlin, 1986. https://doi.org/10.1007/978-3-642-61623-5
- J. Guan, S. Jing, and Z. Si, A rotational velocity-correction projection method for unsteady incompressible magnetohydrodynamics equations, Comput. Math. Appl. 80 (2020), no. 5, 809-821. https://doi.org/10.1016/j.camwa.2020.04.017
- J. L. Guermond, P. Minev, and J. Shen, An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 44-47, 6011-6045. https://doi.org/10.1016/j.cma.2005.10.010
- Y. Guo and Y. He, Fully discrete finite element method based on second-order Crank-Nicolson/Adams-Bashforth scheme for the equations of motion of Oldroyd fluids of order one, Discrete Contin. Dyn. Syst. Ser. B 20 (2015), no. 8, 2583-2609. https://doi.org/10.3934/dcdsb.2015.20.2583
- E. Hansen and T. Stillfjord, Convergence of the implicit-explicit Euler scheme applied to perturbed dissipative evolution equations, Math. Comp. 82 (2013), no. 284, 1975-1985. https://doi.org/10.1090/S0025-5718-2013-02702-0
- Y. He, The Euler implicit/explicit scheme for the 2D time-dependent Navier-Stokes equations with smooth or non-smooth initial data, Math. Comp. 77 (2008), no. 264, 2097-2124. https://doi.org/10.1090/S0025-5718-08-02127-3
- Y. He, P. Huang, and X. Feng, H2-stability of the first order fully discrete schemes for the time-dependent Navier-Stokes equations, J. Sci. Comput. 62 (2015), no. 1, 230-264. https://doi.org/10.1007/s10915-014-9854-9
- Y. He and J. Li, A penalty finite element method based on the Euler implicit/explicit scheme for the time-dependent Navier-Stokes equations, J. Comput. Appl. Math. 235 (2010), no. 3, 708-725. https://doi.org/10.1016/j.cam.2010.06.025
- Y. He, Y. Lin, S. S. P. Shen, W. Sun, and R. Tait, Finite element approximation for the viscoelastic fluid motion problem, J. Comput. Appl. Math. 155 (2003), no. 2, 201-222. https://doi.org/10.1016/S0377-0427(02)00864-6
- J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization, SIAM J. Numer. Anal. 19 (1982), no. 2, 275-311. https://doi.org/10.1137/0719018
- J. Jin, T. Zhang, and J. Li, H2-stability of the first order Galerkin method for the Boussinesq equations with smooth and non-smooth initial data, Comput. Math. Appl. 75 (2018), no. 1, 248-288. https://doi.org/10.1016/j.camwa.2017.09.014
- X. Li and J. Shen, Error analysis of the SAV-MAC scheme for the Navier-Stokes equations, SIAM J. Numer. Anal. 58 (2020), no. 5, 2465-2491. https://doi.org/10.1137/19M1288267
- X. Li and J. Shen, On a SAV-MAC scheme for the Cahn-Hilliard-Navier-Stokes phasefield model and its error analysis for the corresponding Cahn-Hilliard-Stokes case, Math. Models Methods Appl. Sci. 30 (2020), no. 12, 2263-2297. https://doi.org/10.1142/S0218202520500438
- X. Li, J. Shen, and Z. Liu, New SAV-pressure correction methods for the Navier-Stokes equations: stability and error analysis, Math. Comp. 91 (2021), no. 333, 141-167. https://doi.org/10.1090/mcom/3651
- X. Li, J. Shen, and H. Rui, Energy stability and convergence of SAV block-centered finite difference method for gradient flows, Math. Comp. 88 (2019), no. 319, 2047-2068. https://doi.org/10.1090/mcom/3428
- L. Lin, Z. Yang, and S. Dong, Numerical approximation of incompressible Navier-Stokes equations based on an auxiliary energy variable, J. Comput. Phys. 388 (2019), 1-22. https://doi.org/10.1016/j.jcp.2019.03.012
- Z. Liu and X. Li, The exponential scalar auxiliary variable (E-SAV) approach for phase field models and its explicit computing, SIAM J. Sci. Comput. 42 (2020), no. 3, B630-B655. https://doi.org/10.1137/19M1305914
- J. Marti and P. B. Ryzhakov, An explicit-implicit finite element model for the numerical solution of incompressible Navier-Stokes equations on moving grids, Comput. Methods Appl. Mech. Engrg. 350 (2019), 750-765. https://doi.org/10.1016/j.cma.2019.03.007
- H. Niu, D. Yang, and J. Zhou, Numerical analysis of an optimal control problem governed by the stationary Navier-Stokes equations with global velocity-constrained, Commun. Comput. Phys. 24 (2018), no. 5, 1477-1502. https://doi.org/10.4208/cicp.oa2017-0045
- A. K. Pani and J. Y. Yuan, Semidiscrete finite element Galerkin approximations to the equations of motion arising in the Oldroyd model, IMA J. Numer. Anal. 25 (2005), no. 4, 750-782. https://doi.org/10.1093/imanum/dri016
- A. K. Pani, J. Y. Yuan, and P. D. Dam'azio, On a linearized backward Euler method for the equations of motion of Oldroyd fluids of order one, SIAM J. Numer. Anal. 44 (2006), no. 2, 804-825. https://doi.org/10.1137/S0036142903428967
- J. Shen, On error estimates of projection methods for Navier-Stokes equations: first-order schemes, SIAM J. Numer. Anal. 29 (1992), no. 1, 57-77. https://doi.org/10.1137/0729004
- J. Shen and J. Xu, Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows, SIAM J. Numer. Anal. 56 (2018), no. 5, 2895-2912. https://doi.org/10.1137/17M1159968
- J. Shen, J. Xu, and J. Yang, The scalar auxiliary variable (SAV) approach for gradient flows, J. Comput. Phys. 353 (2018), 407-416. https://doi.org/10.1016/j.jcp.2017.10.021
- X. Shen, Y. Wang, and Z. Si, A rotational pressure-correction projection methods for unsteady incompressible magnetohydrodynamics equations, Appl. Math. Comput. 387 (2020), 124488, 21 pp. https://doi.org/10.1016/j.amc.2019.06.002
- P. E. Sobolevskii, Stabilization of viscoelastic fluid motion (Oldroyd's mathematical model), Diff. Integral Equ. 7 (1994), no. 5-6, 1597-1612. https://doi.org/10.57262/die/1369329533
- J. Su and Y. He, The almost unconditional convergence of the Euler implicit/explicit scheme for the three dimensional nonstationary Navier-Stokes equations, Discrete Contin. Dyn. Syst. Ser. B 22 (2017), no. 9, 3421-3438. https://doi.org/10.3934/dcdsb.2017173
- R. Temam, Navier-Stokes equations. Theory and numerical analysis, Studies in Mathematics and its Applications, Vol. 2, North-Holland Publishing Co., Amsterdam, 1977.
- Y. Wang, S. Li, and Z. Si, A second order in time incremental pressure correction finite element method for the Navier-Stokes/Darcy problem, ESAIM Math. Model. Numer. Anal. 52 (2018), no. 4, 1477-1500. https://doi.org/10.1051/m2an/2017049
- K. Wang, Z. Si, and Y. Yang, Stabilized finite element method for the viscoelastic Oldroyd fluid flows, Numer. Algorithms 60 (2012), no. 1, 75-100. https://doi.org/10.1007/s11075-011-9512-3
- Z. Yang and S. Dong, An unconditionally energy-stable scheme based on an implicit auxiliary energy variable for incompressible two-phase flows with different densities involving only precomputable coefficient matrices, J. Comput. Phys. 393 (2019), 229-257. https://doi.org/10.1016/j.jcp.2019.05.018
- X. Yang, J. Zhao, and X. He, Linear, second order and unconditionally energy stable schemes for the viscous Cahn-Hilliard equation with hyperbolic relaxation using the invariant energy quadratization method, J. Comput. Appl. Math. 343 (2018), 80-97. https://doi.org/10.1016/j.cam.2018.04.027
- X. Yang, J. Zhao, and Q. Wang, Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method, J. Comput. Phys. 333 (2017), 104-127. https://doi.org/10.1016/j.jcp.2016.12.025
- T. Zhang, D. Pedro, and J. Yuan, A large time stepping viscosity-splitting finite element method for the viscoelastic flow problem, Adv. Comput. Math. 41 (2015), no. 1, 149-190. https://doi.org/10.1007/s10444-014-9353-4
- T. Zhang and Y. Qian, Stability analysis of several first order schemes for the Oldroyd model with smooth and nonsmooth initial data, Numer. Methods Partial Differential Equations 34 (2018), no. 6, 2180-2216. https://doi.org/10.1002/num.22283
- T. Zhang and J. Yuan, A stabilized characteristic finite element method for the viscoelastic Oldroyd fluid motion problem, Int. J. Numer. Anal. Model. 12 (2015), no. 4, 617-635.
- T. Zhang and J. Yuan, Unconditional stability and optimal error estimates of Euler implicit/explicit-SAV scheme for the Navier-Stokes equations, J. Sci. Comput. 90 (2022), no. 1, Paper No. 1, 20 pp. https://doi.org/10.1007/s10915-021-01681-y
- J. Zhao, Q. Wang, and X. Yang, Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach, Internat. J. Numer. Methods Engrg. 110 (2017), no. 3, 279-300. https://doi.org/10.1002/nme.5372
- J. Zhou, Z. Jiang, H. Xie, and H. Niu, The error estimates of spectral methods for 1-dimension singularly perturbed problem, Appl. Math. Lett. 100 (2020), 106001, 8 pp. https://doi.org/10.1016/j.aml.2019.106001
- J. Zhou, H. Li, and Z. Zhang, A posteriori error estimates of spectral approximations for second order partial differential equations in spherical geometries, J. Sci. Comput. 90 (2022), no. 1, Paper No. 56, 30 pp. https://doi.org/10.1007/s10915-021-01696-5