Acknowledgement
본 연구는 환경산업기술원의 연구비 지원(KEITI 2019002480004)으로 수행되었습니다.
References
- Buxton, G. V., Greenstock, C. L., Helman, W. P., Ross, A. B., 1988, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O-) in aqueous solution. J. Phys. Chem. Ref. Data, 17(2), 513-886. https://doi.org/10.1063/1.555805
- Fan, D., Lan, Y., Tratnyek, P. G., Johnson, R. L., Filip, J., O'Carroll, D. M., Garcia, A. N., Agrawal, A., 2017, Sulfidation of iron-based materials: a review of processes and implications for water treatment and remediation. Enviro. Sci. Technol., 51(22), 13070-13085. https://doi.org/10.1021/acs.est.7b04177
- Furman, O. S., Teel, A. L., Watts, R. J., 2010, Mechanism of base activation of persulfate, Environ. Sci. & Technol.. 44, 6423-4528.
- Gong, Y., Tang, J., Zhao, D., 2016, Application of iron sulfide particles for groundwater and soil remediation: A review, Water Res., 89, 309-320. https://doi.org/10.1016/j.watres.2015.11.063
- Guo, W., Zhao, Q., Du, J., Wang, H., Li, X., Ren, N., 2020, Enhanced removal of sulfadiazine by sulfidated ZVI activated persulfate process: Performance, mechanisms and degradation pathways, Chem. Eng. J., 388, 124303.
- Hu, C., Chen, Q., Chen, G., Liu, H, Qu, J., 2015, Removal of Se(IV) and Se(VI) from drinking water by coagulation, Sep. Purif. Technol., 142(4), 65-70. https://doi.org/10.1016/j.seppur.2014.12.028
- Huling, S. G., Pivetz, B. E., 2006, In-situ chemical oxidation. EPA Engineering Issue(EPA/600/R-06/072), Office of Research and Development, National Risk Management Research Laboratory, Ohio, USA.
- Jeong, H. Y., Hayes, K. F., 2007. Reductive dechlorination of tetrachloroethylene and trichloroethylene by mackinawite (FeS) in the presence of metals: reaction rates. Environ. Sci. Technol., 41(18), 6390-6396. https://doi.org/10.1021/es0706394
- Kwon, H. W., Hwang, I., Kim, Y. H., 2020, Improving the reactivity and harmlessness of recalcitrant contaminants by reduction-oxidation-linked process, J. Environ. Sci. Int., 29(12), 1205-1211. https://doi.org/10.5322/JESI.2020.29.12.1205
- Rayaroth, M. P., Lee, C. S., Aravind, U. K., Aravindakumar, C. T., Chang, Y. S., 2017, Oxidative degradation of benzoic acid using Fe0- and sulfidized Fe0-activated persulfate: a comparative study, Chem. Eng. J., 315, 426-436. https://doi.org/10.1016/j.cej.2017.01.031
- Sun, W., Pan, W., Wang, F., Xu, N., 2015, Removal of Se(IV) and Se(VI) by MFe2O4 nanoparticles from aqueous solution, Chem. Eng. J., 273, 353-362. https://doi.org/10.1016/j.cej.2015.03.061
- Teel, A. L, Ahmad, M., Watts, R. J., 2011, Persulfate activation by naturally occurring trace minerals, J. Hazard. Mater., 196, 153-159. https://doi.org/10.1016/j.jhazmat.2011.09.011
- Tsitonaki, A., Petri, B., Crimi, M., Mosbaek, H., Siegrist, R. L., Bjerg, P. L., 2010, In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review, Crit. Rev. Environ. Sci. Technol., 40, 55-91. https://doi.org/10.1080/10643380802039303
- Wuana, R. A., Okieimen, F. E., 2011, Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol., 2011, 1-20. https://doi.org/10.5402/2011/402647
- Ye, J., Chen, X., Chen, C., Bate, B., 2019, Emerging sustainable technologies for remediation of soils and groundwater in a municipal solid waste landfill site - A review, Chemosphere, 227, 681-702. https://doi.org/10.1016/j.chemosphere.2019.04.053
- Zeng, X., Wang, L., Zhang, Y., Zhou, S., Yu, Z., Liu, X., Chen, C., 2022, Enhanced removal of organic pollutants by ball-milled FeS/ZVI activated persulfate process: Characterization, performance, and mechanisms, Surf. Interfaces, 29, 101697.