DOI QR코드

DOI QR Code

Effect of May 31, 2022 Miryang Forest Fire on Fine Particle Concentration in Nearby Urban Areas

2022년 5월 31일 발생한 밀양산불이 인근 도시 지역의 미세먼지 농도에 미치는 영향

  • Byung-Il Jeon (Department of Air Traffic & Operation Management, Silla University)
  • 전병일 (신라대학교 항공교통관리학과)
  • Received : 2022.10.31
  • Accepted : 2023.01.12
  • Published : 2023.01.31

Abstract

This study investigated the effect of May 31, 2022 Miryang wildfire on fine particle concentrations in Busan and Gimhae, which are neighboring urban areas. In addition, fine particle characteristics and air pollution concentrations were investigated in Miryang, where haze occurred. The Miryang city wildfire that occurred on May 31, 2022, at 0925 LST, was driven by strong north winds and increased fine particle concentrations in Dongsangdong and Jangyoodong, Gimhae City, which are approximately 35 km to the southeast and south, respectively, of the wildfire occurrence site. Furthermore, the fine particle concentration in Myeongjidong, which is approximately 50 km south-southeast of the wildfire site, exhibited a temporary increase at 1400 LST owing to the effects of wildfire smoke. On the morning of June 1, the day after the fire, the Miryang area had very bad visibility because of the smoke from the fire. Therefore the PM10 and PM2.5 concentrations in Naeildong, 3 km south of the wildfire site, were 276 ㎍/㎥ and 222 ㎍/㎥, respectively, at 1200 LST. In addition, the gases O3, CO, and SO2 showed high concentrations at the time of haze generation. This study provides insights into policy making in response to the rapid increase in fine dust when wildfire occurs near cities.

Keywords

References

  1. Adame, J. A., Lope, L., Hidalgo, P. J., Sorribas, M., Gutierrez-Alvarez, I., Aguila, A., Saiz-Lopez, A., Yela, M., 2018, Study of the exceptional meteorological conditions, trace gases and particulate matter measured during the 2017 forest fire in Donana Natural Park, Spain, Sci. Total Environ., 645, 710-720. https://doi.org/10.1016/j.scitotenv.2018.07.181
  2. An, S. G., Choi, K. H., 2021, Effect of forest fire on fine particulate matter concentration in coastal cities of Gangwon-do, South Korea, Asso. Kor. Geo., 10, 391-400. https://doi.org/10.25202/JAKG.10.3.4
  3. Arriagada, N. B., Palmer, A. J., Bowman, D. M., Morgan, G. G., Jalaludin, B. B., Johnston, F. H., 2020, Unprecedented smoke-related health burden associated with the 2019-20 bushfires in eastern Australia, Medi. Australia, 213, 282-283. https://doi.org/10.5694/mja2.50545
  4. Bowman, D. M., Johnston, F. H., 2005, Wildfire smoke, fire management, and human health, EcoHealth, 2, 76-80. https://doi.org/10.1007/s10393-004-0149-8
  5. Draxler, R. R., Rolph, G. D., 2013, HYSPLIT (hybrid single-particle Lagrangian integrated trajectory) model access via NOAA ARL READY Website (http://ready.arl.noaa.gov/HYSPLIT_traj.php).
  6. Dreessen, J., Sullivan, J., Delgado, R., 2016, Observations and impacts of transported Canadian wildfire smoke on ozone and aerosol air quality in the Maryland region on June 9-12, 2015, Air Waste Manag. Assoc., 66, 842-862. https://doi.org/10.1080/10962247.2016.1161674
  7. Hung, W. T., Lu, C. H., Alessandrini, S., Kumar, R., Lin, C. A., 2011, The impacts of transported wildfire smoke aerosols on surface air quality in New York State: A multi-year study using machine learning, Atmos. Environ., 259, 118513.
  8. Jin, Q. F., Wang, W. H., Ma, X. Q., Yang S. Y., Guo, F. T., 2017, Temporal and spatial dynamics of pollutants emission from forest fires in Fujian during 2000-2010, China Environ. Sci., 37, 476-485.
  9. Korea Forest Service, 2022a, https://www.forest.go.kr/kfsweb/.
  10. Korea Forest Service, 2022b, Gyeongsangnam-do Miryang area forest fire extinguishing briefing, 2.
  11. Korea Meteorological Administration 2022, 2022 Busan Ulsan Gyeongnam spring climate characteristics, 11.
  12. Le, G. E., Breysse, P. N., McDermott, A., Eftim, S. E., Geyh, A., Berman, J. D., Curriero, F. C., 2014, Canadian forest fires and the effects of long-range transboundary air pollution on hospitalizations among the elderly, 2014, Int. Geo-Inf., 3, 713-731. https://doi.org/10.3390/ijgi3020713
  13. Lee, K. H., Kim, J. E., Kim, Y. J., Kim, J., 2004, Impact of the smoke aerosol from Russian forest fires on the atmospheric environment over Korea during May 2003, Kor. Atmos. Environ., 20, 603-613.
  14. Oliveira, M., Delerue-Matos, C., Pereira, M. C., Morais, S., 2020, Environmental particulate matter levels during 2017 large forest fires and megafires in the center region of Portugal: a public health concern?, Int. Enviro. Pub. Heal., 17, 1.032-1,051.
  15. Pahlow, M., Kleissl, J., Parlange, M. B., 2005, Atmospheric boundary-layer structure observed during a haze event due to forest-fire smoke, Bound. Layer Meteorol., 114, 53-70. https://doi.org/10.1007/s10546-004-6350-z
  16. Reid, J. S., Koppmann, R., Eck, T. F., Eleuterio, D. P., 2005, A Review of biomass burning emissions part II: intensive physical properties of biomass burning particles, Atmos. Chem. Phys., 5, 799-825. https://doi.org/10.5194/acp-5-799-2005
  17. Reisen, F., Duran, S. M., Flannigan, M., Elliott, C., Rideout, K., 2015, Wildfire smoke and public health risk, Inter. Wild., Fire, 2015, 24, 1029-1044. https://doi.org/10.1071/WF15034
  18. Smolyakov, B. S., Makarov, V. I., Shinkorenko, M. P., Popova, S. A., Bizin, M. A., 2014, Effects of Siberian wildfires on the chemical composition and acidity of atmospheric aerosols of remote urban, rural and background territories, Environ. Pollu., 188, 8-16. https://doi.org/10.1016/j.envpol.2014.01.017
  19. Wotawa, G., Trainer, M., 2000, The influence of Canadian forest fires on pollutant concentrations in the United States, Science 288, 324-328. https://doi.org/10.1126/science.288.5464.324
  20. Xie, Y., Lin, M., Horowitz, L. W., 2020, Summer PM2.5 pollution extremes caused by wildfires over the western United States during 2017-2018, Geophy. Resear Let., 47, e2020GL089429.