DOI QR코드

DOI QR Code

Efficacy evaluation of novel organic iron complexes in laying hens: effects on laying performance, egg quality, egg iron content, and blood biochemical parameters

  • Jiuai Cao (College of Animal Sciences, Zhejiang University) ;
  • Jiaming Zhu (College of Animal Sciences, Zhejiang University) ;
  • Qin Zhou (College of Animal Sciences, Zhejiang University) ;
  • Luyuan Zhao (College of Animal Sciences, Zhejiang University) ;
  • Chenhao Zou (College of Animal Sciences, Zhejiang University) ;
  • Yanshan Guo (College of Animal Sciences, Zhejiang University) ;
  • Brian Curtin (Zinpro Corporation) ;
  • Fei Ji (Zinpro Corporation) ;
  • Bing Liu (College of Animal Sciences, Zhejiang University) ;
  • Dongyou Yu (College of Animal Sciences, Zhejiang University)
  • Received : 2022.03.04
  • Accepted : 2022.08.22
  • Published : 2023.03.01

Abstract

Objective: This study was conducted to determine the optimal dose of novel iron amino acid complexes (Fe-Lys-Glu) by measuring laying performance, egg quality, egg iron (Fe) concentrations, and blood biochemical parameters in laying hens. Methods: A total of 1,260 18-week-old healthy Beijing White laying hens were randomly divided into 7 groups with 12 replicates of 15 birds each. After a 2-wk acclimation to the basal diet, hens were fed diets supplemented with 0 (negative control, the analyzed innate iron content was 75.06 mg/kg), 15, 30, 45, 60, and 75 mg Fe/kg as Fe-Lys-Glu or 45 mg Fe/kg from FeSO4 (positive control) for 24 wk. Results: Results showed that compared with the negative and positive control groups, dietary supplementation with 30 to 75 mg Fe/kg from Fe-Lys-Glu significantly (linear and quadratic, p<0.05) increased the laying rate (LR) and average daily egg weight (ADEW); hens administered 45 to 75 mg Fe/kg as Fe-Lys-Glu showed a remarkable (linear, p<0.05) decrease in feed conversion ratio. There were no significant differences among all groups in egg quality. The iron concentrations in egg yolk and serum were elevated by increasing Fe-Lys-Glu levels, and the highest iron content was found in 75 mg Fe/kg group. In addition, hens fed 45 mg Fe/kg from Fe-Lys-Glu had (linear and quadratic, p<0.05) higher yolk Fe contents than that with the same dosage of FeSO4 supplementation. The red blood cell (RBC) count and hemoglobin content (linear and quadratic, p<0.05) increased obviously in the groups fed with 30 to 75 mg Fe/kg as Fe-Lys-Glu in comparison with the control group. Fe-Lys-Glu supplementation also (linear and quadratic, p<0.05) enhanced the activity of copper/zinc-superoxide dismutase (Cu/Zn-SOD) in serum, as a result, the serum malonaldehyde content (linear and quadratic, p<0.05) decreased in hens received 60 to 75 mg Fe/kg as Fe-Lys-Glu. Conclusion: Supplementation Fe-Lys-Glu in laying hens could substitute for FeSO4 and the optimal additive levels of Fe-Lys-Glu are 45 mg Fe/kg in layers diets based on the quadratic regression analysis of LR, ADEW, RBC, and Cu/Zn-SOD.

Keywords

Acknowledgement

Our study was funded by the Key Projects of Science and Technology Plan of Zhejiang Province, China (No. 2015C 02022). We thank to Zinpro Corporation for providing the experimental materials (Fe-Lys-Glu).

References

  1. Abbaspour N, Hurrell R, Kelishadi R. Review on iron and its importance for human health. J Res Med Sci 2014;19:164-74.
  2. Zhou L, Zhao B, Zhang L, et al. Alterations in cellular iron metabolism provide more therapeutic opportunities for cancer. Int J Mol Sci 2018;19:1545. https://doi.org/10.3390/ijms19051545
  3. Drygalski AV, Adamson JW. Iron metabolism in man. J Parenter Enteral Nutr 2013;37:599-606. https://doi.org/10.1177/0148607112459648
  4. Trivedi R, Barve K. Delivery systems for improving iron uptake in anemia. Int J Pharm 2021;601:120590. https://doi.org/10.1016/j.ijpharm.2021.120590
  5. Wang J, Pantopoulos K. Regulation of cellular iron metabolism. Biochem J 2011;434:365-81. https://doi.org/10.1042/bj2011825
  6. Sarlak S, Tabeidian SA, Toghyani M, Shahraki ADF, Goli M, Habibian M. Effects of replacing inorganic with organic iron on performance, egg quality, serum and egg yolk lipids, antioxidant status, and iron accumulation in eggs of laying hens. Biol Trace Elem Res 2021;199:1986-99. https://doi.org/10.1007/s12011-020-02284-8
  7. Baker RD, Greer FR. Diagnosis and prevention of iron deficiency and iron-deficiency anemia in infants and young children (0-3 years of age). Pediatrics 2010;126:1040-50. https://doi.org/10.1542/peds.2010-2576
  8. Bai S, Zhang K, Ding X, et al. High dietary iron differentially influences the iron distribution in the livers and the spleens of laying hens after salmonella typhimurium infection. Biol Trace Elem Res 2018;185:497-508. https://doi.org/10.1007/s12011-018-1275-4
  9. Bess F, Vieira SL, Favero A, Cruz RA, Nascimento PC. Dietary iron effects on broiler breeder performance and egg iron contents. Anim Feed Sci Technol 2012;178:67-73. https://doi.org/10.1016/j.anifeedsci.2012.10.002
  10. Ma XY, Liu SB, Lu L, et al. Relative bioavailability of iron proteinate for broilers fed a casein-dextrose diet. Poult Sci 2014;93:556-63. https://doi.org/10.3382/ps.2013-03296
  11. Kegley EB, Spears JW, Flowers WL, Schoenherr WD. Iron methionine as a source of iron for the neonatal pig. Nutr Res 2002;22:1209-17. https://doi.org/10.1016/S0271-5317(02)00434-7
  12. Sun Q, Guo Y, Li J, Zhang T, Wen J. Effects of methionine hydroxy analog chelated Cu/Mn/Zn on laying performance, egg quality, enzyme activity and mineral retention of laying hens. J Poult Sci 2012;49:20-5. https://doi.org/10.2141/jpsa. 011055
  13. Zhang LY, Lu L, Zhang LY, Luo XG. The chemical characteristics of organic iron sources and their relative bioavailabilities for broilers fed a conventional corn-soybean meal diet. J Anim Sci 2016;94:2378-96. https://doi.org/10.2527/jas.016-0297
  14. Layrisse M, Garcia-Casal MN, Solano L, et al. Iron bioavailability in humans from breakfasts enriched with iron bisglycine chelate, phytates and polyphenols. J Nutr 2000;130: 2195-9. https://doi.org/10.1093/jn/130.9.2195
  15. Xie C, Elwan HAM, Elnesr SS, Dong XY, Zou XT. Effect of iron glycine chelate supplementation on egg quality and egg iron enrichment in laying hens. Poult Sci 2019;98:7101-9. https://doi.org/10.3382/ps/pez421 
  16. AOAC. Official methods of analysis of AOAC International. 18th ed., Rev. 3, Horowitz W, Latimer Jr. GW, editor. Gaithersburg, MA, USA: AOAC International; 2010.
  17. Gugala D, Flis M, Grela ER. The effect of zinc, iron, calcium, and copper from organic sources in pheasant diet on the performance, hatching, minerals, and fatty acid composition of eggs. Poult Sci 2019; 98:4640-7. https://doi.org/10.3382/ps/pez162
  18. Wang Z, Kong L, Zhu L, Hu X, Su P, Song Z. The mixed application of organic and inorganic selenium shows better effects on incubation and progeny parameters. Poult Sci 2021;100:1132-41. https://doi.org/10.1016/j.psj.2020.10.037
  19. Revy PS, Jondreville C, Dourmad JY, Nys Y. Effect of zinc supplemented as either an organic or an inorganic source and of microbial phytase on zinc and other minerals utilisation by weanling pigs. Anim Feed Sci Technol 2004;116:93-112. https://doi.org/10.1016/j.anifeedsci.2004.04.003
  20. Sun J, Liu D, Shi R. Supplemental dietary iron glycine modifies growth, immune function, and antioxidant enzyme activities in broiler chickens. Livest Sci 2015;176:129-34. https://doi.org/10.1016/j.livsci.2015.03.004
  21. Langini S, Carbone N, Galdi M, et al. Ferric glycinate iron bioavailability for rats. As determined by extrinsic radioisotopic labelling of infant formulas. Nutr Rep Int 1988;38:729-35.
  22. Olivares M, Pizarro F, Pineda O, Name JJ, Hertrampf E, Walter T. Milk inhibits and ascorbic acid favors ferrous bis-glycine chelate bioavailability in humans. J Nutr 1997;127:1407-11. https://doi.org/10.1093/jn/127.7.1407
  23. Xie C, Elwan HAM, Elnesr SS, Dong X, Feng J, Zou X. Effects of iron glycine chelate on laying performance, antioxidant activities, serum biochemical indices, iron concentrations and transferrin mRNA expression in laying hens. J Anim Physiol Anim Nutr (Berl) 2019;103:547-54. https://doi.org/10.1111/jpn.13061
  24. Creech BL, Spears JW, Flowers WL, et al. Effect of dietary trace mineral concentration and source (inorganic vs. chelated) on performance, mineral status, and fecal mineral excretion in pigs from weaning through finishing. J Anim Sci 2004;82:2140-7. https://doi.org/10.2527/2004.8272140x
  25. Feng J, Ma WQ, Xu ZR, Heb JX, Wang YZ, Liu JX. The effect of iron glycine chelate on tissue mineral levels, fecal mineral concentration, and liver antioxidant enzyme activity in weanling pigs. Anim Feed Sci Technol 2009;150:106-13. https://doi.org/10.1016/j.anifeedsci.2008.07.004
  26. Kwiecien M, Samolinska W, Bujanowicz-Haras B. Effects of iron-glycine chelate on growth, carcass characteristic, liver mineral concentrations and haematological and biochemical blood parameters in broilers. J Anim Physiol Anim Nutr (Berl) 2015;99:1184-96. https://doi.org/10.1111/jpn.12322
  27. Tu YJ, Zou XT, Tang SQ. Effect of different iron from sources on laying performance and egg quality in Roman hens. J Zhejiang Univ Sci B 2004;30:561-6.
  28. Inkee P, Hankyu L, Sewon P. Effects of organic iron supplementation on the performance and iron content in the egg yolk of laying hens. J Poult Sci 2009;46:198-202. https://doi.org/10.2141/jpsa.46.198
  29. Greengard O, Sentenac A, Mendelsohn N. Phosvitin, the iron carrier of egg yolk. Biochim Biophys Acta 1964;90:406-7. https://doi.org/10.1016/0304-4165(64)90208-9
  30. Samaraweera H, Zhang WG, Lee EJ, Ahn DU. Egg yolk phosvitin and functional phosphopeptides--review. J Food Sci 2011;76:R143-50. https://doi.org/10.1111/j.1750-3841.2011.02291.x
  31. Ghasemi HA, Kazemi-Bonchenari M, Khaltabadi-Farahani AH, Motlagh MK. The effect of feeding rations with different ratios of concentrate to alfalfa hay on blood hematological and biochemical parameters of farmed ostriches (Struthio camelus). Trop Anim Health Prod 2013;45:1635-40. https://doi.org/10.1007/s11250-013-0409-0
  32. Hentze MW, Muckenthaler MU, Galy B, Camaschella C. Two to tango: regulation of Mammalian iron metabolism. Cell 2010;142:24-38. https://doi.org/10.1016/j.cell.2010.06.028
  33. Deng Q, Wang Y, Wang X, et al. Effects of dietary iron level on growth performance, hematological status, and intestinal function in growing-finishing pigs. J Anim Sci 2021;99:skab002. https://doi.org/10.1093/jas/skab002
  34. Kals J, Blonk RJW, van der Mheen HW, Schrama JW, Verreth JAJ. Effect of different iron sources on the alleviation of nutritional anaemia in common sole (Solea solea). Aquaculture 2016;451:266-70. https://doi.org/10.1016/j.aquaculture.2015.08.036
  35. Li Y, Yang W, Dong D, et al. Effect of different sources and levels of iron in the diet of sows on iron status in neonatal pigs. Anim Nutr 2018;4:197-202. https://doi.org/10.1016/j.aninu.2018.01.002
  36. Egeli AK, Framstad T, Gronningen D. The effect of peroral administration of amino acid-chelated iron to pregnant sows in preventing sow and piglet anaemia. Acta Vet Scand 1998;39:77-87. https://doi.org/10.1186/BF03547809
  37. Andrews NC. Disorders of iron metabolism. N Engl J Med 1999;341:1986-95. https://doi.org/10.1056/nejm199912233412607
  38. Trist BG, Hilton JB, Hare DJ, Crouch PJ, Double KL. Superoxide dismutase 1 in health and disease: Howafrontline antioxidant becomes neurotoxic. Angew Chem Int Ed Engl 2021;60: 9215-46. https://doi.org/10.1002/anie.202000451
  39. Kohen R, Nyska A. Invited review: oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 2002;30:620-50. https://doi.org/10.1080/01926230290166724
  40. Ghonimi NAM, Elsharkawi KA, Khyal DM, Abdelghani AA. Serum malondialdehyde as a lipid peroxidation marker in multiple sclerosis patients and its relation to disease characteristics. Mult Scler Relat Disord 2021;51:102941. https://doi. org/10.1016/j.msard.2021.102941
  41. Ma WQ, Sun H, Zhou Y, Wu J, Feng J. Effects of iron glycine chelate on growth, tissue mineral concentrations, fecal mineral excretion, and liver antioxidant enzyme activities in broilers. Biol Trace Elem Res 2012;149:204-11. https://doi.org/10.1007/s12011-012-9418-5