과제정보
This research was funded by the National Natural Science Foundation of China (NSFC, Grant no. 31772618).
참고문헌
- Sharma NK, Choct M, Dunlop MW, Wu S, Castada HZ, Swick RA. Characterisation and quantification of changes in odorants from litter headspace of meat chickens fed diets varying in protein levels and additives. Poult Sci 2017;96:851-60. https://doi.org/10.3382/ps/pew309
- Murphy KR, Parcsi G, Stuetz RM. Non-methane volatile organic compounds predict odor emitted from five tunnel ventilated broiler sheds. Chemosphere 2014;95:423-32. https://doi.org/10.1016/j.chemosphere.2013.09.076
- Ayseli MT, Filik G, Selli S. Evaluation of volatile compounds in chicken breast meat using simultaneous distillation and extraction with odour activity value. J Food Nutr Res 2014; 53:137-42.
- Khattak F, Helmbrecht A. Effect of different levels of tryptophan on productive performance, egg quality, blood biochemistry, and caecal microbiota of hens housed in enriched colony cages under commercial stocking density. Poult Sci 2019;98:2094-104. https://doi.org/10.3382/ps/pey562
- Liu D, Wei Y, Liu X, et al. Indoleacetate decarboxylase is a glycyl radical enzyme catalysing the formation of malodorant skatole. Nat Commun 2018;9:4224. https://doi.org/10.1038/s41467-018-06627-x
- Tesso TA, Zheng A, Cai H, Liu G. Isolation and characterization of two acinetobacter species able to degrade 3-methylindole. PLoS One 2019;14:e0211275. https://doi.org/10.1371/journal.pone.0211275
- Zhu X, Liu J, Liu H, Yang G. Soybean oligosaccharide, stachyose, and raffinose in broilers diets: effects on odor compound concentration and microbiota in cecal digesta. Poult Sci 2020;99:3532-9. https://doi.org/10.1016/j.psj.2020.03.034
- Liu HY, Li X, Zhu X, Dong WG, Yang GQ. Soybean oligosaccharides attenuate odour compounds in excreta by modulating the caecal microbiota in broilers. Animal 2021;15:100159. https://doi.org/10.1016/j.animal.2020.100159
- Jensen RL. Feed interventions and skatole deposition [thesis]. Copenhagen, Denmark: Copenhagen University; 2012. https://www.orgprints.org/id/eprint/22058/7/22058.pdf
- Wang B, Min Z, Yuan J. Apparent ileal digestible tryptophan requirements of 22 to 42-day-old broiler chicks. J Appl Poult Res 2016;25:54-61. https://doi.org/10.3382/japr/pfv061
- Borges BS, Nunes RC. Strighini JH, et al. Digestible tryptophan levels for male broilers in pre-starter and starter diets. Semin Cienc Agrar 2016;37:2529-38. https://doi.org/10.5433/1679-0359.2016v37n4Supl1p2529
- Apajalahti J, Vienola K. Interaction between chicken intestinal microbiota and protein digestion. Anim Feed Sci Technol 2016;221:323-30. https://doi.org/10.1016/j.anifeedsci.2016.05.004
- Yang G, Zhang P, Liu H, Zhu X, Dong W. Spatial variations in intestinal skatole production and microbial composition in broilers. Anim Sci J 2019;90:412-22. https://doi.org/10.1111/asj.13164
- Liu HY, Hou R, Yang GQ, Zhao F, Dong WG. In vitro effects of inulin and soya bean oligosaccharide on skatole production and the intestinal microbiota in broilers. J Anim Physiol Anim Nutr 2018;102:706-16. https://doi.org/10.1111/jpn.12830
- Zhang P. Research on the basic laws of skatole production and its variation with intestinal microbial components in broilers. Shenyang, Liaoning, China: Shenyang Agricultural University; 2016. https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201701&filename=1016149187.nh
- AOAC. Official methods of analysis, 14th ed. Association of official analytical chemists. Washington, DC, USA; 1984.
- Millet S. The interaction between dietary valine and tryptophan content and their effect on the performance of piglets. Animals 2012;2:76-84. https://doi.org/10.3390/ani2010076
- Bansleben D, Schellenberg I, Wolff A. Highly automated and fast determination of raffinose family oligosaccharides in lupinus seeds using pressurized liquid extraction and high-performance anion-exchange chromatography with pulsed amperometric detection. J Sci Food Agric 2008;88:1949-53. https://doi.org/10.1002/jsfa.3294
- Yang GQ, Yin Y, Liu HY, Liu GH. Effects of dietary oligosaccharide supplementation on growth performance, concentrations of the major odor-causing compounds in excreta, and the cecal microflora of broilers. Poult Sci 2016;95:2342-51. https://doi.org/10.3382/ps/pew124
- Julak J, Stranska E, Prochazkova-Francisci E, Rosova V. Blood cultures evaluation by gas chromatography of volatile fatty acids. Med Sci Monit 2000;6:605-10.
- Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2020;26:2460-1. https://doi.org/10.1093/bioinformatics/btq461
- Henry Y, Seve B, Colleaux Y, Ganier P, Saligaut C, Jego P. Interactive effects of dietary levels of tryptophan and protein on voluntary feed intake and growth performance in pigs, in relation to plasma free amino acids and hypothalamic serotonin. J Anim Sci 1992;70:1873-87. https://doi.org/10.2527/1992.7061873x
- Opoola E, Onimisi PA, Ogundipe SO, Baw GS. Effect of dietary tryptophan levels on growth performance of broiler chickens reared in the hot season under tropical environment. Trop Subtrop Agroecosyst 2017;20:429-37. https://doi.org/10.56369/tsaes.2384
- Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Commun 2018;9:3294. https://doi.org/10.1038/s41467-018-05470-4
- Jensen BB, Jensen MT. Microbial production of skatole in the digestive tract of entire male pigs. In: Jensen WK, editor. Skatole and boar taint, results from an integrated national research project investigating causes of boar taint in Danish pigs. Roskilde, Denmark: Danish Meat Research Institute; 1998. pp. 41-76.
- Cho S, Hwang O, Park S. Effect of dietary protein levels on composition of odorous compounds and bacterial ecology in pig manure. Asian-Australas J Anim Sci 2015;28:1362-70. https://doi.org/10.5713/ajas.15.0078
- Macfarlane GT, Allison C, Gibson SAW, Cummings JH. Contribution of the microflora to proteolysis in the human large intestine. J Appl Bacteriol 1988;64:37-46. https://doi.org/10.1111/j.1365-2672.1988.tb02427.x
- Liu H, Zhao X, Yang G, Liu J, Zhu X. Effects of the dietary stachyose levels on caecal skatole concentration, hepatic cytochrome P450 mRNA expressions and enzymatic activities in broilers. Br J Nutr 2020;124:1013-20. https://doi.org/10.1017/S0007114520002263
- Zhou XL, Kong XF, Yang XJ, Yin YL. Soybean oligosaccharides alter colon short-chain fatty acid production and microbial population in vitro. J Anim Sci 2012;90(Suppl 4):37-39. https://doi.org/10.2527/jas.50269
- Lan Y, Williams BA, Verstegen MWA, Patterson R, Tamminga S. Soy oligosaccharides in vitro fermentation characteristics and its effect on caecal microorganisms of young broiler chickens. Anim Feed Sci Technol 2007;133:286-97. https://doi.org/10.1016/j.anifeedsci.2006.04.011
- Zhao J, Zhang X, Liu H, Brown MA, Qiao S. Dietary protein and gut microbiota composition and function. Curr Protein Pept Sci 2019;20:145-54. https://doi.org/10.2174/1389203719666180514145437
- Windey K, De Preter V, Verbeke K. Relevance of protein fermentation to gut health. Mol Nutr Food Res 2012;56:184-96. https://doi.org/10.1002/mnfr.201100542
- Gonzalez-Ortiz G, Olukosi OA, Jurgens G, Apajalahti J, Bedford MR. Short-chain fatty acids and ceca microbiota profiles in broilers and turkeys in response to diets supplemented with phytase at varying concentrations, with or without xylanase. Poult Sci 2020;99:2068-77. https://doi.org/10.1016/j.psj.2019.11.051
- Von Engelhardt W, Bartels J, Kirschberger S, zu Duttingdorf HDM, Busche R. Role of short-chain fatty acids in the hind gut. Vet Q 1998;20(Suppl 3):52-9. https://doi.org/10.1080/01652176.1998.9694970
- Godwin IR, Russell WJ. Reverse peristalsis in the chicken digestive tract. In: Corbett JL, Choct M, Nolan JV, Rowe JB, editors. Proceedings of the recent advances in animal nutrition in Australia. Armidale, Australia: University of New England; 1997. 229 p.
- Zhou Z, Zheng W, Shang W, Du H, Li G, Yao W. How host gender affects the bacterial community in pig feces and its correlation to skatole production. Ann Microbiol 2015;65:2379-86. https://doi.org/10.1007/s13213-015-1079-0
- Laparra JM, Sanz Y. Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol Res 2010;61:219-25. https://doi.org/10.1016/j.phrs.2009.11.001
- Pieper R, Taciak M, Pieper L, et al. Comparison of the nutritional value of diets containing differentially processed blue sweet lupin seeds or soybean meal for growing pigs. Anim Feed Sci Technol 2016;221:79-86. https://doi.org/10.1016/j.anifeedsci.2016.08.026