과제정보
This work was supported by the Natural Science Foundation of Hunan Province (2021JJ30386), Innovation Platform and Talent Plan Program of Hunan Province (2021NK1009), Key Research and Development Program of Hunan Province (2020NK2024), Open Research Program of Hunan Provincial Key Laboratory (2017TP1030), Changsha·China Longping Seed Industry Silicon Valley Program (2020) and Modern Swine Industry Technology System of Hunan Province.
참고문헌
- Davoli R, Gaffo E, Zappaterra M, Bortoluzzi S, Zambonelli P. Identification of differentially expressed small RNAs and prediction of target genes in Italian Large White pigs with divergent backfat deposition. Anim Genet 2018;49:205-14. https://doi.org/10.1111/age.12646
- Medina-Remon A, Kirwan R, Lamuela-Raventos RM, Estruch R. Dietary patterns and the risk of obesity, type 2 diabetes mellitus, cardiovascular diseases, asthma, and neurodegenerative diseases. Crit Rev Food Sci Nutr 2018;58:262-96. https://doi.org/10.1080/10408398.2016.1158690
- Spurlock ME, Gabler NK. The development of porcine models of obesity and the metabolic syndrome. J Nutr 2008;138:397-402. https://doi.org/10.1093/jn/138.2.397
- Hou X, Yang Y, Zhu S, et al. Comparison of skeletal muscle miRNA and mRNA profiles among three pig breeds. Mol Genet Genomics 2016;291:559-73. https://doi.org/10.1007/s00438-015-1126-3
- Chen C, Deng B, Qiao M, et al. Solexa sequencing identification of conserved and novel microRNAs in backfat of Large White and Chinese Meishan pigs. PLoS One 2012;7:e31426. https://doi.org/10.1371/journal.pone.0031426
- Chen C, Cui Q, Zhang X, et al. Long non-coding RNAs regulation in adipogenesis and lipid metabolism: emerging insights in obesity. Cell Signal 2018;51:47-58. https://doi.org/10.1016/j.cellsig.2018.07.012
- Gharanei S, Shabir K, Brown JE, et al. Regulatory microRNAs in brown, brite and white adipose tissue. Cells 2020;9:2489. https://doi.org/10.3390/cells9112489
- Huang W, Zhang X, Li A, Xie L, Miao X. Differential regulation of mRNAs and lncRNAs related to lipid metabolism in two pig breeds. Oncotarget 2017;8:87539-53. https://doi.org/10.18632/oncotarget.20978
- Yu L, Tai L, Zhang L, Chu Y, Li Y, Zhou L. Comparative analyses of long non-coding RNA in lean and obese pig. Oncotarget 2017;8:41440-50. https://doi.org/10.18632/oncotarget.18269
- Liu X, Liu K, Shan B, et al. A genome-wide landscape of mRNAs, lncRNAs, and circRNAs during subcutaneous adipogenesis in pigs. J Anim Sci Biotechnol 2018;9:76. https://doi.org/10.1186/s40104-018-0292-7
- Miao Z, Wang S, Zhang J, et al. Identification and comparison of long non-conding RNA in Jinhua and Landrace pigs. Biochem Biophys Res Commun 2018;506:765-71. https://doi.org/10.1016/j.bbrc.2018.06.028
- Sun Y, Chen X, Qin J, et al. Comparative analysis of long noncoding RNAs expressed during intramuscular adipocytes adipogenesis in fat-type and lean-type pigs. J Agric Food Chem 2018;66:12122-30. https://doi.org/10.1021/acs.jafc.8b04243
- Kumar H, Srikanth K, Park W, et al. Transcriptome analysis to identify long non coding RNA (lncRNA) and characterize their functional role in back fat tissue of pig. Gene 2019;703:71-82. https://doi.org/10.1016/j.gene.2019.04.014
- Xu D, He C, Li Q, He J, Ma H. The complete mitochondrial genome of the Daweizi pig. Mitochondrial DNA 2015;26:640-1. https://doi.org/10.3109/19401736.2013.836514
- Chen C, Ridzon DA, Broomer AJ, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 2005;33:e179. https://doi.org/10.1093/nar/gni178
- Zhang D, Wu W, Huang X, Xu K, Zheng C, Zhang J. Comparative analysis of gene expression profiles in differentiated subcutaneous adipocytes between Jiaxing Black and Large White pigs. BMC Genomics 2021;22:61. https://doi.org/10.1186/s12864-020-07361-9
- Zhang X, Wang Y, Su Y, Zuo F, Wu B, Nian X. MiR-26a regulated adipogenic differentiation of ADSCs induced by insulin through CDK5/FOXC2 pathway. Mol Cell Biochem 2021;476:1705-16. https://doi.org/10.1007/s11010-020-04033-w
- Tang R, Ma F, Li W, Ouyang S, Liu Z, Wu J. miR-206-3p inhibits 3T3-L1 cell adipogenesis via the c-Met/PI3K/Akt Pathway. Int J Mol Sci 2017;18:1510. https://doi.org/10.3390/ijms1801510
- Liu S, Zhang Y, Gao Y, et al. miR-378 plays an important role in the differentiation of bovine preadipocytes. Cell Physiol Biochem 2015;36:1552-62. https://doi.org/10.1159/000430318
- Jiang J, Li P, Ling H, Xu Z, Yi B, Zhu S. MiR-499/PRDM16 axis modulates the adipogenic differentiation of mouse skeletal muscle satellite cells. Hum Cell 2018;31:282-91. https://doi.rg/10.1007/s13577-018-0210-5
- Ji S, Li W, Bao L, et al. PU.1 promotes miR-191 to inhibit adipogenesis in 3T3-L1 preadipocytes. Biochem Biophys Res Commun 2014;451:329-33. https://doi.org/10.1016/j.bbrc.2014.07.130
- Liu X, Su K, Kuang S, Fu M, Zhang Z. miR-16-5p and miR145-5p trigger apoptosis in human gingival epithelial cells by down-regulating BACH2. Int J Clin Exp Pathol 2020;13:901-11.
- Li G, Li Y, Li X, Ning X, Li M, Yang G. MicroRNA identity and abundance in developing swine adipose tissue as determined by Solexa sequencing. J Cell Biochem 2011;112:1318-28. https://doi.org/10.1002/jcb.23045
- Li HY, Xi QY, Xiong YY, et al. Identification and comparison of microRNAs from skeletal muscle and adipose tissues from two porcine breeds. Anim Genet 2012;43:704-13. https://doi.org/10.1111/j.1365-2052.2012.02332.x
- Li Y. Comparing of backfat microRNAomes of Landrace and Neijiang pig by high-throughput sequencing. Genes Genomics 2021;43:543-51. https://doi.org/10.1007/s13258-021-01078-z
- Xing K, Zhao X, Liu Y, et al. Identification of differentially expressed microRNAs and their potential target genes in adipose tissue from pigs with highly divergent backfat thickness. Animals (Basel) 2020;10:624. https://doi.org/10.3390/ani10040624
- Zhou X, Beilter A, Xu Z, et al. Wnt/β-catenin-mediated p53 suppression is indispensable for osteogenesis of mesenchymal progenitor cells. Cell Death Dis 2021;12:521. https://doi.org/10.1038/s41419-021-03758-w
- Wang Y, Qu X, Yang Y, et al. AMPK promotes osteogenesis and inhibits adipogenesis through AMPK-Gfi1-OPN axis. Cell Signal 2016;28:1270-82. https://doi.org/10.1016/j.cellsig.2016.06.004
- Cai R, Tang G, Zhang Q, et al. A novel lnc-RNA, named lncORA, is identified by RNA-Seq analysis, and its knockdown inhibits adipogenesis by regulating the PI3K/AKT/mTOR signaling pathway. Cells 2019;8:477. https://doi.org/10.3390/cells8050477
- Wang J, Zhang Y, Tseng Y, Zhang J. miR-222 targets ACOX1, promotes triglyceride accumulation in hepatocytes. Hepatobiliary Pancreat Dis Int 2019;18:360-5. https://doi.org/10.016/j.hbpd.2019.05.002
- He A, Chen X, Tan M, et al. Acetyl-CoA derived from hepatic peroxisomal β-oxidation inhibits autophagy and promotes steatosis via mTORC1 activation. Mol Cell 2020;79:30-42. https://doi.org/10.1016/j.molcel.2020.05.007
- Pan Z, Wang J, Kang B, et al. Screening and identification of differentially expressed genes in goose hepatocytes exposed to free fatty acid. J Cell Biochem 2010;111:1482-92. https://doi.org/10.1002/jcb.22878
- Sperncer-Jones NJ, Ge D, Snieder H, et al. AMP-kinase alpha2 subunit gene PRKAA2 variants are associated with total cholesterol, low-density lipoprotein-cholesterol and high-density lipoprotein-cholesterol in normal women. J Med Genet 2006;43:936-42. https://doi.org/10.1136/jmg.2006.041988
- Xu Q, Qi W, Zhang Y, et al. DNA methylation of JAK3/STAT5/PPARγ regulated the changes of lipid levels induced by di (2-ethylhexyl) phthalate and high-fat diet in adolescent rats. Environ Sci Pollut Res 2020;27:30232-42. https://doi.org/10.1007/s11356-020-08976-x
- He Z, Zhu HH, Bauler TJ, et al. Nonreceptor tyrosine phosphatase Shp2 promotes adipogenesis through inhibition of p38 MAP kinase. Proc Natl Acad Sci USA 2013;110:E79-88. https://doi.org/10.1073/pnas.1213000110
- Viollet B, Foretz M, Guigas B, et al. Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders. J Physiol 2006;574:41-53. https://doi.org/10.1113/jphysiol.2006.108506
- Wang Q, Liu S, Zhai A, Zhang B, Tian G. AMPK-mediated regulation of lipid metabolism by phosphorylation. Biol Pharm Bull 2018;41:985-93. https://doi.org/10.1248/bpb.b17-00724
- Boulard M, Storck S, Cong R, Pinto R, Delage H, Bouvet P. Histone variant macroH2A1 deletion in mice causes female-specific steatosis. Epigenetics Chromatin 2010;3:8. https://doi.org/10.1186/1756-8935-3-8
- Esau C, Davis S, Murray SF, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006;3:87-98. https://doi.org/10.1016/j.cmet.2006.01.005
- Long J, Dai W, Zheng Y, Zhao S. miR-122 promotes hepatic lipogenesis via inhibiting the LKB1/AMPK pathway by targeting Sirt1 in non-alcoholic fatty liver disease. Mol Med 2019;25:26. https://doi.org/10.1186/s10020-019-0085-2
- Hibuse T, Maeda N, Funahashi T, et al. Aquaporin 7 deficiency is associated with development of obesity through activation of adipose glycerol kinase. Proc Natl Acad Sci USA 2005;102:10993-8. https://doi.org/10.1073/pnas.0503291102