DOI QR코드

DOI QR Code

Role of antioxidants in fertility preservation of sperm - A narrative review

  • Ahmad Yar Qamar (College of Veterinary and Animal Sciences, Sub-campus of University of Veterinary and Animal Science) ;
  • Muhammad Ilyas Naveed (College of Veterinary and Animal Sciences, Sub-campus of University of Veterinary and Animal Science) ;
  • Sanan Raza (College of Veterinary and Animal Sciences, Sub-campus of University of Veterinary and Animal Science) ;
  • Xun Fang (Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University) ;
  • Pantu Kumar Roy (Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University) ;
  • Seonggyu Bang (Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University) ;
  • Bereket Molla Tanga (Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University) ;
  • Islam M. Saadeldin (Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University) ;
  • Sanghoon Lee (Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University) ;
  • Jongki Cho (Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University)
  • Received : 2022.08.29
  • Accepted : 2022.11.07
  • Published : 2023.03.01

Abstract

Male fertility is affected by multiple endogenous stressors, including reactive oxygen species (ROS), which greatly deteriorate the fertility. However, physiological levels of ROS are required by sperm for the proper accomplishment of different cellular functions including proliferation, maturation, capacitation, acrosomal reaction, and fertilization. Excessive ROS production creates an imbalance between ROS production and neutralization resulting in oxidative stress (OS). OS causes male infertility by impairing sperm functions including reduced motility, deoxyribonucleic acid damage, morphological defects, and enhanced apoptosis. Several in-vivo and in-vitro studies have reported improvement in quality-related parameters of sperm following the use of different natural and synthetic antioxidants. In this review, we focus on the causes of OS, ROS production sources, mechanisms responsible for sperm damage, and the role of antioxidants in preserving sperm fertility.

Keywords

Acknowledgement

We would like to acknowledge all members of our research team for their sincere contributions and the funding agency for their financial support.

References

  1. Sanocka D, Kurpisz M. Reactive oxygen species and sperm cells. Reprod Biol Endocrinol 2004;2:12. https://doi.org/10.1186/1477-7827-2-12
  2. Aitken RJ, Smith TB, Jobling MS, Baker MA, De Iuliis GN. Oxidative stress and male reproductive health. Asian J Androl 2014;16:31-8. https://doi.org/10.4103/1008-682X.122203
  3. Covarrubias L, Hernandez-Garcia D, Schnabel D, SalasVidal E, Castro-Obregon S. Function of reactive oxygen species during animal development: Passive or active? Dev Biol 2008;320:1-11. https://doi.org/10.1016/j.ydbio.2008.04.041
  4. Baskaran S, Finelli R, Agarwal A, et al. Reactive oxygen species in male reproduction: A boon or a bane? Andrologia 2021;53: e13577. https://doi.org/10.1111/and.13577
  5. Saleh RA, Agarwal A. Oxidative stress and male infertility: From research bench to clinical practice. J Androl 2002;23: 737-52. https://doi.org/10.1002/j.1939-4640.2002.tb02324.x
  6. 6.Aitken RJ, Gibb Z, Baker MA, et al. Causes and consequences of oxidative stress in spermatozoa. Reprod Fertil Dev 2016;28: 1-10. https://doi.org/10.1071/RD15325
  7. Schuppe HC, Meinhardt A, Allam J, Bergmann M, Weidner W, Haidl G. Chronic orchitis: A neglected cause of male infertility? Andrologia 2008;40:84-91. https://doi.org/10.1111/j.1439-0272.2008.00837.x
  8. Subramanian V, Ravichandran A, Thiagarajan N, Govindarajan M, Dhandayuthapani S, Suresh S. Seminal reactive oxygen species and total antioxidant capacity: Correlations with sperm parameters and impact on male infertility. Clin Exp Reprod Med 2018;45:88-93. https://doi.org/10.5653/cerm.2018.45.2.88
  9. Alahmar AT. The effects of oral antioxidants on the semen of men with idiopathic oligoasthenoteratozoospermia. Clin Exp Reprod Med 2018;45:57-66. https://doi.org/10.5653/cerm.2018.45.2.57
  10. Walczak-Jedrzejowska R, Wolski JK, Slowikowska-Hilczer J. The role of oxidative stress and antioxidants in male fertility. Cent European J Urol 2013;66:60-7. https://doi.org/10.5173/ceju.2013.01.art19
  11. Agarwal A, Virk G, Ong C, Plessis SS. Effect of oxidative stress on male reproduction. World J Mens Health 2014;32:1-17. https://doi.org/10.5534/wjmh.2014.32.1.1
  12. Kang D, Kim D. Antioxidant effect of lonicera caerulea on heat stress-treated male mice. J Anim Reprod Biotechnol 2021;36:220-9. https://doi.org/10.12750/JARB.36.4.220
  13. Alvarez JG, Lasso JL, Blasco L, et al. Centrifugation of human spermatozoa induces sublethal damage; separation of human spermatozoa from seminal plasma by a dextran swim-up procedure without centrifugation extends their motile lifetime. Hum Reprod 1993;8:1087-92. https://doi.org/10.1093/oxfordjournals.humrep.a138198
  14. Desai N, Sharma R, Makker K, Sabanegh E, Agarwal A. Physiologic and pathologic levels of reactive oxygen species in neat semen of infertile men. Fertil Steril 2009;92:1626-31. https://doi.org/10.1016/j.fertnstert.2008.08.109
  15. Sabeur K, Ball BA. Characterization of nadph oxidase 5 in equine testis and spermatozoa. Reproduction 2007;134:26370. https://doi.org/10.1530/rep-06-0120
  16. Thompson A, Agarwal A, Du Plessis SS. Physiological role of reactive oxygen species in sperm function: A review. Antioxidants in male infertility: a guide for clinicians and researchers. New York, USA: Springer Science and Business Media; 2013. pp. 69-89.
  17. Du Plessis SS, Agarwal A, Halabi J, Tvrda E. Contemporary evidence on the physiological role of reactive oxygen species in human sperm function. J Assist Reprod Genet 2015;32: 509-20. https://doi.org/10.1007/s10815-014-0425-7
  18. Griveau JF, Lannou DL. Reactive oxygen species and human spermatozoa: physiology and pathology. Int J Androl 1997; 20:61-9. https://doi.org/10.1046/j.1365-2605.1997.00044.x
  19. Aitken RJ, Harkiss D, Knox W, Paterson M, Irvine DS. A novel signal transduction cascade in capacitating human spermatozoa characterised by a redox-regulated, campmediated induction of tyrosine phosphorylation. J Cell Sci 1998;111:645-56. https://doi.org/10.1242/jcs.111.5.645
  20. Leclerc P, de Lamirande E, Gagnon C. Cyclic adenosine 3', 5' monophosphate-dependent regulation of protein tyrosine phosphorylation in relation to human sperm capacitation and motility. Biol Reprod 1996;55:684-92. https://doi.org/10.1095/biolreprod55.3.684
  21. Griveau JF, Renard P, Lannou DL. Superoxide anion production by human spermatozoa as a part of the ionophore-induced acrosome reaction process. Int J Androl 1995;18:67-74. https://doi.org/10.1111/j.1365-2605.1995.tb00388.x
  22. Goldman R, Ferber E, Zort U. Reactive oxygen species are involved in the activation of cellular phospholipase A2. FEBS Lett 1992;309:190-2. https://doi.org/10.1016/00145793(92)81092-Z
  23. Aitken RJ, Paterson M, Fisher H, Buckingham DW, van Duin M. Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function. J Cell Sci 1995;108:2017-25. https://doi.org/10.1242/jcs.108.5.2017
  24. Roveri A, Ursini F, Flohe L, Maiorino M. PHGPx and spermatogenesis. Biofactors 2001;14:213-22. https://doi.org/10.1002/biof.5520140127
  25. Rivlin J, Mendel J, Rubinstein S, Etkovitz N, Breitbart H. Role of hydrogen peroxide in sperm capacitation and acrosome reaction. Biol Reprod 2004;70:518-22. https://doi.org/10.1095/biolreprod.103.020487
  26. Griveau J, Renard P, Lannou DL. An in vitro promoting role for hydrogen peroxide in human sperm capacitation. Int J Androl 1994;17:300-7. https://doi.org/10.1111/j.1365-2605.1994.tb01260.x
  27. Williams AC, Ford WC. The role of glucose in supporting motility and capacitation in human spermatozoa. J Androl 2001;22:680-95. https://doi.org/10.1002/j.1939-4640.2001.tb02229.x
  28. de Lamirande E, Gagnon C. Capacitation-associated production of superoxide anion by human spermatozoa. Free Radic Biol Med 1995;18:487-95. https://doi.org/10.1016/08915849(94)00169-K
  29. O'Flaherty C, Beorlegui N, Beconi MT. Participation of superoxide anion in the capacitation of cryopreserved bovine sperm. Int J Androl 2003;26:109-14. https://doi.org/10.1046/j. 1365-2605.2003.00404.x
  30. Zhang H, Zheng RL. Promotion of human sperm capacitation by superoxide anion. Free Radic Res 2009;24:261-8. https://doi.org/10.3109/10715769609088023
  31. Askari H, Check J, Peymer N, Bollendorf A. Effect of natural antioxidants tocopherol and ascorbic acids in maintenance of sperm activity during freeze-thaw process. Arch Androl 1994;33:11-5. https://doi.org/10.3109/01485019408987797
  32. Herrero MB, Cebral E, Boquet M, Viggiano JM, Vitullo A, Gimeno MA. Effect of nitric oxide on mouse sperm hyperactivation. Acta Physiol Pharmacol Ther Latinoam 1994; 44:65-9.
  33. Francavilla F, Santucci R, Macerola B, Ruvolo G, Romano R. Nitric oxide synthase inhibition in human sperm affects sperm-oocyte fusion but not zona pellucida binding. Biol Reprod 2000;63:425-9. https://doi.org/10.1095/biolreprod63.2.425
  34. Hellstrom WJ, Bell M, Wang R, et al. Effect of sodium nitroprusside on sperm motility, viability, and lipid peroxidation. Fertil Steril 1994;61:1117-22. https://doi.org/10.1016/S00150282(16)56766-1
  35. Sengoku K, Tamate K, Yoshida T, Takaoka Y, Miyamoto T, Ishikawa M. Effects of low concentrations of nitric oxide on the zona pellucida binding ability of human spermatozoa. Fertil Steril 1998;69:522-7. https://doi.org/10.1016/S00150282(97)00537-2
  36. Zini A, de Lamirande E, Gagnon C. Low levels of nitric oxide promote human sperm capacitation in vitro. J Androl 1995;16:424-31. https://doi.org/10.1002/j.1939-4640.1995.tb00558.x
  37. Stamler JS, Singel DJ, Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science 1992;258:1898-902. https://doi.org/10.1126/science.1281928
  38. Agarwal A, Makker K, Sharma R. Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol 2008;59:2-11. https://doi.org/10.1111/j.1600-0897.2007.00559.x
  39. Dutta S, Majzoub A, Agarwal A. Oxidative stress and sperm function: A systematic review on evaluation and management. Arab J Urol 2019;17:87-97. https://doi.org/10.1080/ 2090598X.2019.1599624
  40. Chen SJ, Allam JP, Duan YG, Haidl G. Influence of reactive oxygen species on human sperm functions and fertilizing capacity including therapeutical approaches. Arch Gynecol Obstet 2013;288:191-9. https://doi.org/10.1007/s00404-0132801-4
  41. Agarwal A, Said TM. Role of sperm chromatin abnormalities and DNA damage in male infertility. Hum Reprod Update 2003;9:331-45. https://doi.org/10.1093/humupd/dmg027
  42. Agarwal A, Gupta S, Sharma RK. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol 2005;3:28. https://doi.org/10.1186/1477-7827-3-28
  43. Peeker R, Abramsson L, Marklund SL. Superoxide dismutase isoenzymes in human seminal plasma and spermatozoa. Mol Hum Reprod 1997;3:1061-6. https://doi.org/10.1093/molehr/3.12.1061
  44. Lin YF, Chang SJ, Yang JR, Lee YP, Hsu AL. Effects of supplemental vitamin e during the mature period on the reproduction performance of taiwan native chicken cockerels. Br Poult Sci 2005;46:366-73. https://doi.org/10.1080/00071660500098186
  45. Youn HD, Kim EJ, Roe JH, Hah YC, Kang SO. A novel nickelcontaining superoxide dismutase from streptomyces spp. Biochem J 1996;318:889-96. https://doi.org/10.1042/bj3180889
  46. Chen H, Chow PH, Cheng SK, Cheung ALM, Cheng LYL, O WS. Male genital tract antioxidant enzymes: Their source, function in the female, and ability to preserve sperm DNA integrity in the golden hamster. J Androl 2003;24:704-11. https://doi.org/10.1002/j.1939-4640.2003.tb02730.x
  47. Asadpour R, Jafari R, Tayefi NH. The effect of antioxidant supplementation in semen extenders on semen quality and lipid peroxidation of chilled bull spermatozoa (short paper). Iranian J Vet Res 2012;13:246-9.
  48. Cocchia N, Pasolini MP, Mancini R, et al. Effect of sod (superoxide dismutase) protein supplementation in semen extenders on motility, viability, acrosome status and erk (extracellular signal-regulated kinase) protein phosphorylation of chilled stallion spermatozoa. Theriogenology 2011;75:1201-10. https://doi.org/10.1016/j.theriogenology.2010.11.031
  49. Del Prete C, Ciani F, Tafuri S, et al. Effect of superoxide dismutase, catalase, and glutathione peroxidase supplementation in the extender on chilled semen of fertile and hypofertile dogs. J Vet Sci 2018;19:667-75. https://doi.org/10.4142/jvs.2018.19.5.667
  50. Tavilani H, Goodarzi MT, Doosti M, et al. Relationship between seminal antioxidant enzymes and the phospholipid and fatty acid composition of spermatozoa. Reprod Biomed Online 2008;16:649-56. https://doi.org/10.1016/S1472-6483(10)60478-6
  51. Yeung CH, Cooper TG, De Geyter M, et al. Studies on the origin of redox enzymes in seminal plasma and their relationship with results of in-vitro fertilization. Mol Hum Reprod 1998;4:835-9. https://doi.org/10.1093/molehr/4.9.835
  52. Bauche F, Fouchard MH, Jegou B. Antioxidant system in rat testicular cells. FEBS Lett 1994;349:392-6. https://doi.org/10.1016/0014-5793(94)00709-8
  53. 53.Fraczek M, Kurpisz M. The redox system in human semen and peroxidative damage of spermatozoa. Postepy Hig Med Dosw 2005;59:523-34.
  54. Li Z, Lin Q, Liu R, Xiao W, Liu W. Protective effects of ascorbate and catalase on human spermatozoa during cryopre-servation. J Androl 2010;31:437-44. https://doi.org/10.2164/ jandrol.109.007849
  55. Moubasher AE, El Din AME, Ali ME, El-sherif WT, Gaber HD. Catalase improves motility, vitality and DNA integrity of cryopreserved human spermatozoa. Andrologia 2013;45: 135-9. https://doi.org/10.1111/j.1439-0272.2012.01310.x
  56. Malo C, Grundin J, Morrell JM, Skidmore JA. Individual male dependent improvement in post-thaw dromedary camel sperm quality after addition of catalase. Anim Reprod Sci 2019;209:106168. https://doi.org/10.1016/j.anireprosci.2019.106168
  57. Rossi T, Mazzilli F, Delfino M, Dondero F. Improved human sperm recovery using superoxide dismutase and catalase supplementation in semen cryopreservation procedure. Cell Tissue Ban 2001;2:9-13. https://doi.org/10.1023/A:1011592621487
  58. Hogarth CA, Griswold MD. The key role of vitamin a in spermatogenesis. J Clin Invest 2010;120:956-62. https://doi.org/10.1172/JCI41303
  59. Yanez-Ortiz I, Catalan J, Delgado-Bermudez A, Carluccio A, Miro J, Yeste M. Addition of reduced glutathione (gsh) to freezing medium reduces intracellular ros levels in donkey sperm. Vet Sci 2021;8:302. https://doi.org/10.3390/vetsci8120302
  60. Irvine DS. Glutathione as a treatment for male infertility. Rev Reprod 1996;1:6-12. https://doi.org/10.1530/revreprod/1.1.6
  61. Olfati Karaji R, Daghigh Kia H, Ashrafi I. Effects of in combination antioxidant supplementation on microscopic and oxidative parameters of freeze-thaw bull sperm. Cell Tissue Ban 2014;15:461-70. https://doi.org/10.1007/s10561-0139412-y
  62. Wang F, Liu S, Shen Y, et al. Protective effects of n-acetylcysteine on cisplatin-induced oxidative stress and DNA damage in hepg2 cells. Exp Ther Med 2014;8:1939-45. https://doi.org/10.3892/etm.2014.2019
  63. Jannatifar R, Parivar K, Roodbari NH, Nasr-Esfahani MH. Effects of n-acetyl-cysteine supplementation on sperm quality, chromatin integrity and level of oxidative stress in infertile men. Reprod Biol Endocrinol 2019;17:24. https://doi.org/10.1186/s12958-019-0468-9
  64. Oeda T, Henkel R, Ohmori H, Schill WB. Scavenging effect of n-acetyl-l-cysteine against reactive oxygen species in human semen: A possible therapeutic modality for male factor infertility? Andrologia 1997;29:125-31. https://doi.org/10.1111/j.1439-0272.1997.tb00305.x
  65. Beheshti R, Asadi A, Eshratkhah B, et al. The effect of cysteine on post-thawed buffalo bull (bubalus bubalis) sperm parameters. Adv Environ Biol 2011;5:1260-3.
  66. Partyka A, Nizanski W, Bajzert J, Lukaszewicz E, Ochota M. The effect of cysteine and superoxide dismutase on the quality of post-thawed chicken sperm. Cryobiology 2013;67:132-6. https://doi.org/10.1016/j.cryobiol.2013.06.002
  67. Coyan K, Baspinar N, Bucak MN, Akalin PP. Effects of cysteine and ergothioneine on post-thawed merino ram sperm and biochemical parameters. Cryobiology 2011;63:1-6. https://doi.org/10.1016/j.cryobiol.2011.04.001
  68. Fraga CG, Motchnik PA, Shigenaga MK, Ames BN. Ascorbic acid protects against endogenous oxidative DNA damage in human sperm. Proc Natl Acad Sci 1991;88:11003-6. https://doi.org/10.1073/pnas.88.24.11003
  69. Dawson EB, Harris WA, Teter MC, Powell LC. Effect of ascorbic acid supplementation on the sperm quality of smokers. Fertil Steril 1992;58:1034-9. https://doi.org/10.1016/S0015-0282(16)55456-9
  70. Akmal M, Qadri JQ, Al-Waili NS, Thangal S, Haq A, Saloom KY. Improvement in human semen quality after oral supplementation of vitamin C. J Med Food 2006;9:440-2. https://doi.org/10.1089/jmf.2006.9.440
  71. Cyrus A, Kabir A, Goodarzi D, Moghimi M. The effect of adjuvant vitamin c after varicocele surgery on sperm quality and quantity in infertile men: A double blind placebo controlled clinical trial. Int Braz J Urol 2015;41:230-8. https://doi.org/10.1590/S1677-5538.IBJU.2015.02.07
  72. Das UB, Mallick M, Debnath JM, Ghosh D. Protective effect of ascorbic acid on cyclophosphamide-induced testicular gametogenic and androgenic disorders in male rats. Asian J Androl 2002;4:201-8.
  73. Verma A, Kanwar KC. Human sperm motility and lipid peroxidation in different ascorbic acid concentrations: An in vitro analysis. Andrologia 1998;30:325-9. https://doi.org/10.1111/j.1439-0272.1998.tb01178.x
  74. Hughes CM, Lewis SE, McKelvey-Martin VJ, Thompson W. The effects of antioxidant supplementation during percoll preparation on human sperm DNA integrity. Hum Reprod 1998;13:1240-7. https://doi.org/10.1093/humrep/13.5.1240
  75. Kessopoulou E, Powers HJ, Sharma KK, et al. A double-blind randomized placebo cross-over controlled trial using the antioxidant vitamin e to treat reactive oxygen species associated male infertility. Fertil Steril 1995;64:825-31. https://doi.org/10.1016/S0015-0282(16)57861-3
  76. Keskes-Ammar L, Feki-Chakroun N, Rebai T, et al. Sperm oxidative stress and the effect of an oral vitamin e and selenium supplement on semen quality in infertile men. Arch Androl 2003;49:83-94. https://doi.org/10.1080/01485010390129269
  77. Suleiman SA, Ali ME, Zaki Z, El-Malik EMA, Nasr MA. Lipid peroxidation and human sperm motility: Protective role of vitamin E. J Androl 1996;17:530-7. https://doi.org/10.1002/j.1939-4640.1996.tb01830.x
  78. Eid Y, Ebeid T, Younis H. Vitamin e supplementation reduces dexamethasone-induced oxidative stress in chicken semen. Br Poult Sci 2006;47:350-6. https://doi.org/10.1080/00071660600753912
  79. De Lamirande E, Gagnon C. Reactive oxygen species and human spermatozoa. I. Effects on the motility of intact spermatozoa and on sperm axonemes. J Androl 1992;13:368-78. https://doi.org/10.1002/j.1939-4640.1992.tb03327.x
  80. Park NC, Park HJ, Lee KM, Shin DG. Free radical scavenger effect of rebamipide in sperm processing and cryopreservation. Asian J Androl 2003;5:195-202.
  81. Rolf C, Cooper T, Yeung C, Nieschlag E. Antioxidant treatment of patients with asthenozoospermia or moderate oligoasthenozoospermia with high-dose vitamin c and vitamin e: a randomized, placebo-controlled, double-blind study. Hum Reprod 1999;14:1028-33. https://doi.org/10.1093/humrep/14.4.1028
  82. Greco E, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Tesarik J. Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J Androl 2005;26:349-53. https://doi.org/10.2164/jandrol.04146
  83. Baker HG, Brindle J, Irvine DS, Aitken RJ. Protective effect of antioxidants on the impairment of sperm motility by activated polymorphonuclear leukocytes. Fertil Steril 1996; 65:411-9. https://doi.org/10.1016/S0015-0282(16)58109-6
  84. Kodama H, Yamaguchi R, Fukuda J, Kasai H, Tanaka T. Increased oxidative deoxyribonucleic acid damage in the spermatozoa of infertile male patients. Fertil Steril 1997;68: 519-24. https://doi.org/10.1016/S0015-0282(97)00236-7
  85. Comhaire FH, Christophe AB, Zalata AA, Dhooge WS, Mahmoud AMA, Depuydt CE. The effects of combined conventional treatment, oral antioxidants and essential fatty acids on sperm biology in subfertile men. Prostaglandins Leukot Essent Fatty Acids 2000;63:159-65. https://doi.org/10.1054/plef.2000.0174
  86. Hargreave T, Kyle K, Baxby K, et al. Randomised trial of mesterolone versus vitamin c for male infertility. Br J Urol 1984;56:740-4. https://doi.org/10.1111/j.1464-410X.1984.tb06160.x
  87. Moslemi MK, Tavanbakhsh S. Selenium-vitamin e supplementation in infertile men: effects on semen parameters and pregnancy rate. Int J Gen Med 2011;4:99-104. https://doi.org/10.2147/IJGM.S16275
  88. Reddy NSS, Mohanarao GJ, Atreja SK. Effects of adding taurine and trehalose to a tris-based egg yolk extender on buffalo (bubalus bubalis) sperm quality following cryopreservation. Anim Reprod Sci 2010;119:183-90. https://doi.org/10.1016/j.anireprosci.2010.01.012
  89. Aly HAA, Khafagy RM. Taurine reverses endosulfan-induced oxidative stress and apoptosis in adult rat testis. Food Chem Toxicol 2014;64:1-9. https://doi.org/10.1016/j.fct.2013.11.007
  90. Mrsny RJ, Waxman L, Meizel S. Taurine maintains and stimulates motility of hamster sperm during capacitation in vitro. J Exp Zool 1979;210:123-8. https://doi.org/10.1002/jez.1402100113
  91. Alvarez JG, Storey BT. Taurine, hypotaurine, epinephrine and albumin inhibit lipid peroxidation in rabbit spermatozoa and protect against loss of motility. Biol Reprod 1983;29:54855. https://doi.org/10.1095/biolreprod29.3.548
  92. Boatman DE, Bavister BD, Cruz E. Addition of hypotaurine can reactivate immotile golden hamster spermatozoa. J Androl 1990;11:66-72. https://doi.org/10.1002/j.1939-4640.1990.tb01581.x
  93. Zhang L, Wang Y, Sohail T, et al. Effects of taurine on sperm quality during room temperature storage in hu sheep. Animals 2021;11:2725. https://doi.org/10.3390/ani11092725
  94. Baran A, Demir K, Sahin BE, et al. Short-term chilled storage of cat semen extended with and without taurine containing milk extenders. J Anim Vet Adv 2009;8:1367-71.
  95. Ijaz A, Ducharme R. Effect of various extenders and taurine on survival of stallion sperm cooled to 5℃. Theriogenology 1995;44:1039-50. https://doi.org/10.1016/0093-691X(95)00290-O
  96. Dorado J, Acha D, Ortiz I, et al. Effect of extender and amino acid supplementation on sperm quality of cooled-preserved andalusian donkey (equus asinus) spermatozoa. Anim Reprod Sci 2014;146:79-88. https://doi.org/10.1016/j.anireprosci.2014.02.009
  97. Chhillar S, Singh VK, Kumar R, Atreja SK. Effects of taurine or trehalose supplementation on functional competence of cryopreserved karan fries semen. Anim Reprod Sci 2012;135: 1-7. https://doi.org/10.1016/j.anireprosci.2012.08.029
  98. Banday MN, Lone FA, Rasool F, Rashid M, Shikari A. Use of antioxidants reduce lipid peroxidation and improve quality of crossbred ram sperm during its cryopreservation. Cryobiology 2017;74:25-30. https://doi.org/10.1016/j.cryobiol.2016.12.008
  99. Gvozdjakova A, Kucharska J, Dubravicky J, Mojto V, Singh RB. Coenzyme q10, α-tocopherol, and oxidative stress could be important metabolic biomarkers of male infertility. Dis Markers 2015;2015:827941. https://doi.org/10.1155/2015/827941
  100. Alahmar AT, Calogero AE, Sengupta P, Dutta S. Coenzyme q10 improves sperm parameters, oxidative stress markers and sperm DNA fragmentation in infertile patients with idiopathic oligoasthenozoospermia. World J Mens Health 2021;39:346-51. https://doi.org/10.5534/wjmh.190145
  101. Lafuente R, Gonzalez-Comadran M, Sola I, et al. Coenzyme q10 and male infertility: a meta-analysis. J Assist Reprod Genet 2013;30:1147-56. https://doi.org/10.1007/s10815-013-0047-5
  102. Ghanbarzadeh S, Garjani A, Ziaee M, Khorrami A. Coq10 and l-carnitine attenuate the effect of high ldl and oxidized ldl on spermatogenesis in male rats. Drug Res 2014;64:5105. https://doi.org/10.1055/s-0033-1361176
  103. Yang S, Fan B, Chen X, Meng Z. Supplementation of the freezing medium with coenzyme q10 attenuates oxidative stress and improves function of frozen-thawed giant grouper (epinephelus lanceolatus) spermatozoa. Theriogenology 2021; 175:77-82. https://doi.org/10.1016/j.theriogenology.2021.08.029
  104. Masoudi R, Sharafi M, Pourazadi L. Improvement of rooster semen quality using coenzyme q10 during cooling storage in the lake extender. Cryobiology 2019;88:87-91. https://doi.org/10.1016/j.cryobiol.2019.03.003
  105. Doidar Y, El-Nagar H, Elrefy A, Mousbah AM. Cryopreservation and quality assessment of buffalo bull (bubalus bubalis) semen using new moringa extender and antioxidant co-q10. J Anim Poult Prod 2018;9:375-81. https://doi.org/10.21608/jappmu.2018.41144
  106. Yousefian I, Emamverdi M, Karamzadeh-Dehaghani A, Sabzian-Melei R, Zhandi M, Zare-Shahneh A. Attenuation of cryopreservation-induced oxidative stress by antioxidant: Impact of coenzyme q10 on the quality of post-thawed buck spermatozoa. Cryobiology 2018;81:88-93. https://doi.org/10.1016/j.cryobiol.2018.02.005
  107. Daghigh Kia H, Bolooki Z, Vaseghi Dodran H, et al. Effect of adding coenzyme q10 and ellagic acid during cryopreservation on post-thaw quality of ram semen. Iran J Appl Anim Sci 2017;7:445-51.
  108. Pindaru LP, Cenariu M, Pall E, et al. Effects of coenzyme q10 on sperm viability during storage of boar semen at 17℃. Sci Works Ser C Vet Med 2015;61:32-6.
  109. Olivieri AJR. Effects of coenzyme q10 (coq10) supplementation on equine semen quality: Pullman, WA, USA: Washington State University; 2019.
  110. Ruiz AJ, Tibary A, Heaton RA, IP Hargreaves, Leadon DP, Bayly WM. Effects of feeding coenzyme q10-ubiquinol on plasma coenzyme q10 cocentrations and semen quality in sallions. J Equine Vet Sci 2021;96:103303. https://doi.org/10.1016/j.jevs.2020.103303
  111. Palozza P, Krinsky NI. Astaxanthin and canthaxanthin are potent antioxidants in a membrane model. Arch Biochem Biophys 1992;297:291-5. https://doi.org/10.1016/0003-9861 (92)90675-M
  112. Tizkar B, Kazemi R, Alipour A, Seidavi A, Naseralavi G, Ponce-Palafox JT. Effects of dietary supplementation with astaxanthin and β-carotene on the semen quality of goldfish (carassius auratus). Theriogenology 2015;84:1111-7. https://doi.org/10.1016/j.theriogenology.2015.06.011
  113. Comhaire F, Garem YE, Mahmoud A, Eertmans F, Schoonjans F. Combined conventional/antioxidant "astaxanthin" treatment for male infertility: A double blind, randomized trial. Asian J Androl 2005;7:257-62. https://doi.org/10.1111/j.1745-7262.2005.00047.x
  114. Vahidinia A, Rahbar AR, Shakoori Mahmoodabadi MM. Effect of astaxanthin, vitamin E, and vitamin C in combination with calorie restriction on sperm quality and quantity in male rats. J Diet Suppl 2017;14:252-63. https://doi.org/10.1080/19390211.2016.1211783
  115. Bahmanzadeh M, Vahidinia A, Mehdinejadiani S, Shokri S, Alizadeh Z. Dietary supplementation with astaxanthin may ameliorate sperm parameters and DNA integrity in streptozotocin-induced diabetic rats. Clin Exp Reprod Med 2016;43:90-6. https://doi.org/10.5653/cerm.2016.43.2.90
  116. Fang Y, Zhong R, Chen L, Feng C, Sun H, Zhou D. Effects of astaxanthin supplementation on the sperm quality and antioxidant capacity of ram semen during liquid storage. Small Rumin Res 2015;130:178-82. https://doi.org/10.1016/j.smallrumres.2015.05.016
  117. Guo HT, Wang JT, Sun LZ, et al. Effects of astaxanthin on plasma membrane function and fertility of boar sperm during cryopreservation. Theriogenology 2021;164:58-64. https://doi.org/10.1016/j.theriogenology.2021.01.007
  118. Qamar AY, Fang X, Bang S, Shin ST, Cho J. The effect of astaxanthin supplementation on the post-thaw quality of dog semen. Reprod Domest Anim 2020;55:1163-71. https://doi.org/10.1111/rda.13758
  119. Abdi-Benemar H, Khalili B, Zamiri MJ, et al. Effects of astaxanthin supplementation on the freezability, lipid peroxidation, antioxidant enzyme activities and post-thawing fertility of ram semen. Small Rumin Res 2020;192:106213. https:// doi.org/10.1016/j.smallrumres.2020.106213
  120. Eser A, Aydemir T. The effect of kinetin on wheat seedlings exposed to boron. Plant Physiol Biochem 2016;108:158-64. https://doi.org/10.1016/j.plaphy.2016.06.024
  121. Olsen A, Siboska GE, Clark BFC, Rattan SIS. N6-furfuryladenine, kinetin, protects against fenton reaction-mediated oxidative damage to DNA. Biochem Biophys Res Commun 1999;265:499-502. https://doi.org/10.1006/bbrc.1999.1669
  122. Abdel-Latif R, Fathy M, Anwar HA, Naseem M, Dandekar T, Othman EM. Cisplatin-induced reproductive toxicity and oxidative stress: Ameliorative effect of kinetin. Antioxidants 2022;11:863. https://doi.org/10.3390/antiox11050863
  123. Qamar AY, Fang X, Bang S, Kim MJ, Cho J. Effects of kinetin supplementation on the post-thaw motility, viability, and structural integrity of dog sperm. Cryobiology 2020;95:906. https://doi.org/10.1016/j.cryobiol.2020.05.015
  124. Zadeh Hashem E, Eslami M. Kinetin improves motility, viability and antioxidative parameters of ram semen during storage at refrigerator temperature. Cell Tissue Bank 2018;19: 97-111. https://doi.org/10.1007/s10561-016-9604-3
  125. Bevilacqua A, Carlomagno G, Gerli S, et al. Results from the international consensus conference on myo-inositol and d-chiro-inositol in obstetrics and gynecology-assisted reproduction technology. Gynaecol Endocrinol 2015;31:441-6. https://doi.org/10.3109/09513590.2015.1006616
  126. Artini PG, Casarosa E, Carletti E, Monteleone P, Noia AD, Berardino OMD. In vitro effect of myo-inositol on sperm motility in normal and oligoasthenospermia patients undergoing in vitro fertilization. Gynaecol Endocrinol 2017;33:109-12. https://doi.org/10.1080/09513590.2016.1254179
  127. Calogero AE, Gullo G, La Vignera S, Condorelli RA, Vaiarelli A. Myoinositol improves sperm parameters and serum repro- ductive hormones in patients with idiopathic infertility: a prospective double-blind randomized placebo-controlled study. Andrology 2015;3:491-5. https://doi.org/10.1111/andr.12025
  128. Condorelli RA, La Vignera S, Di Bari F, Unfer V, Calogero AE. Effects of myoinositol on sperm mitochondrial function in-vitro. Eur Rev Med Pharmacol Sci 2011;15:129-34.
  129. Condorelli RA, La Vignera S, Bellanca S, Vicari E, Calogero AE. Myoinositol: Does it improve sperm mitochondrial function and sperm motility? Urology 2012;79:1290-5. https://doi.org/10.1016/j.urology.2012.03.005
  130. Qamar AY, Fang X, Kim MJ, Cho J. Myoinositol supplementation of freezing medium improves the quality-related parameters of dog sperm. Animals 2019;9:1038. https://doi.org/10.3390/ani9121038
  131. Dogu Z, Sahinoz E, Aral F, Koyuncu I, Yuksekdag O. Effects of inositol supplementation in sperm extender on the quality of cryopreserved mesopotamian catfish (silurus triostegus, h. 1843) sperm. Animals 2021;11:3029. https://doi.org/10.3390/ani11113029
  132. Vash NT, Nadri P, Karimi A. Synergistic effects of myoinositol and melatonin on cryopreservation of goat spermatozoa. Reprod Domest Anim 2022;57:876-85. https://doi.org/10.1111/rda.14131
  133. Abdolsamadi M, Mohammadi F, Nashtaei MS, et al. Does myoinositol supplement improve sperm parameters and DNA integrity in patients with oligoasthenoteratozoospermia after the freezing-thawing process? Cell Tissue Ban 2020;21: 99-106. https://doi.org/10.1007/s10561-019-09801-7
  134. Ponchia R, Bruno A, Renzi A, et al. Oxidative stress measurement in frozen/thawed human sperm: The protective role of an in vitro treatment with myo-inositol. Antioxidants 2022; 11:10. https://doi.org/10.3390/antiox11010010
  135. Johinke D, De Graaf SP, Bathgate R. Quercetin reduces the in vitro production of H2O2 during chilled storage of rabbit spermatozoa. Anim Reprod Sci 2014;151:208-19. https://doi.org/10.1016/j.anireprosci.2014.10.017
  136. Seifi-Jamadi A, Ahmad E, Ansari M, Kohram H. Antioxidant effect of quercetin in an extender containing dma or glycerol on freezing capacity of goat semen. Cryobiology 2017;75: 15-20. https://doi.org/10.1016/j.cryobiol.2017.03.002
  137. Avdatek F, Yeni D, Inanc ME, et al. Supplementation of quercetin for advanced DNA integrity in bull semen cryopreservation. Andrologia 2018;50:e12975. https://doi.org/10.1111/and.12975
  138. Bang S, Qamar AY, Tanga BM, et al. Quercetin improves the apoptotic index and oxidative stress in post-thaw dog sperm. Environ Sci Pollut Res 2022;29:21925-34. https://doi.org/10.1007/s11356-021-17421-6
  139. Zribi N, Chakroun NF, Abdallah FB, et al. Effect of freezing- thawing process and quercetin on human sperm survival and DNA integrity. Cryobiology 2012;65:326-31. https://doi.org/10.1016/j.cryobiol.2012.09.003
  140. Gibb Z, Butler TJ, Morris LHA, et al. Quercetin improves the postthaw characteristics of cryopreserved sex-sorted and nonsorted stallion sperm. Theriogenology 2013;79:1001-9. https://doi.org/10.1016/j.theriogenology.2012.06.032
  141. Qazi IH, Angel C, Yang H, et al. Role of selenium and selenoproteins in male reproductive function: a review of past and present evidences. Antioxidants 2019;8:268. https://doi.org/10.3390/antiox8080268
  142. Noack-Fuller G, De Beer C, Seibert H. Cadmium, lead, selenium, and zinc in semen of occupationally unexposed men. Andrologia 1993;25:7-12. https://doi.org/10.1111/j.1439-0272.1993.tb02674.x
  143. Ghafarizadeh AA, Vaezi G, Shariatzadeh MA, Malekirad AA. Effect of in vitro selenium supplementation on sperm quality in asthenoteratozoospermic men. Andrologia 2018; 50:e12869. https://doi.org/10.1111/and.12869
  144. Powell SR. The antioxidant properties of zinc. J Nutr 2000; 130:1447S-54S. https://doi.org/10.1093/jn/130.5.1447S
  145. Wu J, Wu S, Xie Y, et al. Zinc protects sperm from being damaged by reactive oxygen species in assisted reproduction techniques. Reprod Biomed Online 2015;30:334-9. https://doi.org/10.1016/j.rbmo.2014.12.008
  146. Chia SE, Ong CN, Chua LH, Ho LM, Tay SK. Comparison of zinc concentrations in blood and seminal plasma and the various sperm parameters between fertile and infertile men. J Androl 2000;21:53-7. https://doi.org/10.1002/j.1939-4640.2000.tb03275.x
  147. Omu A, Al-Azemi M, Kehinde EO, Anim JT, Oriowo MA, Mathew TC. Indications of the mechanisms involved in improved sperm parameters by zinc therapy. Med Princ Pract 2008;17:108-16. https://doi.org/10.1159/000112963
  148. Talevi R, Barbato V, Fiorentino I, Braun S, Longobardi S, Gualtieri R. Protective effects of in vitro treatment with zinc, d-aspartate and coenzyme q10 on human sperm motility, lipid peroxidation and DNA fragmentation. Reprod Biol Endocrinol 2013;11:81. https://doi.org/10.1186/1477-782711-81
  149. Berkovitz A, Allouche-Fitoussi D, Izhakov D, Breitbart H. Cryopreservation of human sperm in the presence of zn2+ increases the motility rate. J Obstet Gynecol Invest 2018;1: e6-12. https://doi.org/10.5114/jogi.2018.73423
  150. Reddy VS, Yadav B, Yadav CL, et al. Effect of sericin supplementation on heat shock protein 70 (hsp70) expression, redox status and post thaw semen quality in goat. Cryobiology 2018; 84:33-9. https://doi.org/10.1016/j.cryobiol.2018.08.005
  151. Kumar P, Kumar D, Sikka P, Singh P. Sericin supplementation improves semen freezability of buffalo bulls by minimizing oxidative stress during cryopreservation. Anim Reprod Sci 2015;152:26-31. https://doi.org/10.1016/j.anireprosci.2014.11.015
  152. Raza S, Ucan U, Aksoy M, Erdogan G, Ceylan A, Serin I. Silk protein sericin pretreatment enhances osmotic tolerance and post-thaw sperm quality but reduces the ability of sperm cells to undergo in vitro induced acrosome reaction in rabbit. Cryobiology 2019;90:1-7. https://doi.10.1016/j.cryobiol.2019.09.008
  153. Nasirabadi MH, Shirazi A, Kadivar A, et al. Sericin ameliorates the capacitation state and chromatin integrity of frozenthawed stallion spermatozoa by reducing oxidative stress. Avicenna J Med Biotechnol 2019;11:245-52.
  154. Foote RH, Brockett CC, Kaproth MT. Motility and fertility of bull sperm in whole milk extender containing antioxidants. Anim Reprod Sci 2002;71:13-23. https://doi.org/10.1016/S0378-4320(02)00018-0
  155. Shabanian S, Farahbod F, Rafieian M, Ganji F, Adib A. The effects of vitamin c on sperm quality parameters in laboratory rats following long-term exposure to cyclophosphamide. J Adv Pharm Technol Res 2017;8:73-9. https://doi.org/10.4103/japtr.JAPTR_153_16
  156. Scott R, MacPherson A, Yates R, et al. The effect of oral selenium supplementation on human sperm motility. Br J Urol 1998;82:76-80. https://doi.org/10.1046/j.1464-410x.1998.00683.x
  157. Lewin A, Lavon H. The effect of coenzyme q10 on sperm motility and function. Mol Aspects Med 1997;18:213-9. https://doi.org/10.1016/S0098-2997(97)00036-8
  158. Dona G, Kozuh I, Brunati AM, et al. Effect of astaxanthin on human sperm capacitation. Mar Drugs 2013;11:1909-19. https://doi.org/10.3390/md11061909