DOI QR코드

DOI QR Code

기후변화 연구에 관한 한국기상학회 60년사

60 Years of Korean Meteorological Society on Climate Change

  • 안중배 (부산대학교 대기환경과학과) ;
  • 변영화 (국립기상과학원 기후변화예측연구팀) ;
  • 차동현 (울산과학기술원 도시환경공학과)
  • Joong-Bae Ahn (Department of Atmospheric Sciences, Pusan National University) ;
  • Young-Hwa Byun (Climate Change Research Team, National Institute of Meteorological Sciences) ;
  • Dong-Hyun Cha (Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
  • 투고 : 2023.02.17
  • 심사 : 2023.03.22
  • 발행 : 2023.03.31

초록

This paper aims to examine from various perspectives how domestic research studies and projects related to climate change have been conducted to mark the 60th anniversary of the Korean Meteorological Society (KMS). The 『50-year History of the Korean Meteorological Society』, published more than a decade ago, has never dealt with the history of development of individual fields of meteorology such as climate change. Therefore, it is of significance to look at the history of research activities and studies achieved by KMS members in the area of climate change over the past 60 years. The research on climate change in KMS is classified by era from the beginning to the latest and the contents are examined by major research projects at that time. During the past 60 years, climatological research in KMS has been mainly focused on general climate, synoptic climate, and applied climate (urban climate) until the 2000s. However, since the 1990s, climate change has become an important area for climate research. The 2000s are the beginning era of climate change research, since the major projects and researches for climate change has begun in the period. The 2010s can be a time when climate change prediction and monitoring are expanded and refined to meet the rapidly increasing demands for climate information from a wide range of areas. We concluded that the development of the research capabilities of the society over the past 60 years, in particular in the past two decades, in the field of climate change research is remarkable.

키워드

참고문헌

  1. Ahn, J.-B., 1992: A heat Flux Correction Method Applicable to a Climate Model Experiment. Asia-Pac. J. Atmos. Sci., 28, 183-191.
  2. Ahn, J.-B., H.-S. Park, and J.-W. Kim, 1997: On the intraseasonal oscillation in CGCM Tr7W6. Asia-Pac. J. Atmos. Sci., 33, 709-723. (in Korean with English abstract).
  3. Ahn, J.-B., and J.-W. Kim, 1998: Long-term responses of CGCM Tr7W6 to gradual increase of CO2: part I. annual trends of climate variables. Asia-Pac. J. Atmos. Sci., 34, 263-271 (in Korean with English abstract).
  4. Ahn, J.-B., Y.-W. Choi, S.-R. Jo, and J.-Y. Hong, 2014: Projection of 21st century climate over Korean Peninsula: temperature and precipitation simulated by WRFV3.4 based on RCP4.5 and 8.5 scenarios, Atmosphere, 24, 541-554, doi: 10.14191/Atmos.2014.24.4. 541 (in Korean with English abstract).
  5. Ahn, J.-B., and Coauthors., 2016a: Changes of precipitation extremes over South Korea projected by the 5 RCMs under RCP scenarios. Asia-Pac. J. Atmos. Sci., 52, 223-236, doi: 10.1007/s13143-016-0021-0.
  6. Ahn, J.-B., J.-H. Hong, and K.-M. Shim, 2016b: Agro-climate changes over Northeast Asia in RCP scenarios simulated by WRF. Int. J. Climatol., 36, 1278-1290, doi: 10.1002/joc.4423.
  7. Ahn, J.-B., and Coauthors, 2020: Climatic yield potential of Japonica-type rice in the Korean Peninsula under RCP scenarios using the ensemble of multi-GCM and multi-RCM chains. Int. J. Climatol., 41, E1287-E1302, doi: 10.1002/joc.6767.
  8. Ahn, Y.-I., and D.-K. Lee, 2002: Impact of bogus tropical cyclones on summertime circulation in regional climate simulation. J. Geophys. Res., 107, 4303, doi: 10.1029/2001JD000416.
  9. Baek, H.-J., and Coauthors, 2013: Climate change in the 21st century simulated by HadGEM2-AO under Representative Concentration Pathways. Asia-Pac. J. Atmos. Sci., 49, 603-618, doi: 10.1007/s13143-013-0053-7.
  10. Cha, D.-H., D.-K. Lee, and S.-Y. Hong, 2008: Impact of boundary layer processes on seasonal simulation of the East Asian summer monsoon using a regional climate model. Meteorol. Atmos. Phys., 100, 53-72, doi: 10.1007/s00703-008-0295-6.
  11. Cha, D.-H., and D.-K. Lee, 2009: Reduction of systematic errors in regional climate simulations of the summer monsoon over East Asia and the western North Pacific by applying the spectral nudging technique. J. Geophys. Res., 114, D14108, doi: 10.1029/2008JD011176.
  12. Cha, D.-H., C.-S. Jin, and D.-K. Lee, 2011: Impact of local SST anomaly over the western North Pacific on extreme East Asian summer monsoon, Clim. Dyn., 37, 1691-1705, doi: 10.1007/s00382-010-0983-z.
  13. Cha, D.-H., D.-K. Lee, C.-S. Jin, G. Kim, Y.-H. Choi, M.-S. Suh, and H.-S. Kang, 2016: Future changes in summer precipitation in regional climate simulations over the Korean Peninsula forced by Multi-RCP scenarios of HadGEM2-AO, Asia-Pac. J. Atmos. Sci., 52, 139-149, doi: 10.1007/s13143-016-0015-y.
  14. Cho, H.-K., 1968: Radiation balance over Korea, J. Korean Meteorol. Soc., 4, 8-12 (in Korean with English abstract).
  15. Choi, S.-J., D.-H. Cha, and D.-K. Lee, 2008: Simulation of the 18-day summer heavy rainfall over East Asia using a regional climate model. J. Geophys. Res., 113, D12101, doi: 10.1029/2007JD009213.
  16. Choi, Y.-W., J.-B. Ahn, M.-S. Suh, D.-H. Cha, D.-K. Lee, S.-Y. Hong, S.-K. Min, S.-C. Park, and H.-S. Kang, 2016: Future changes in drought characteristics over South Korea using multi regional climate models with the standardized precipitation index. Asia-Pac. J. Atmos. Sci., 52, 209-222, doi: 10.1007/s13143-016-0020-1.
  17. Dickinson, R. E., R. M. Errico, F. Giorgi, and G. T. Bates, 1989: A regional climate model for the western United States. Climate Change., 15, 383-342.
  18. Giorgi, F., 1990: Simulation of regional climate using a limited area model nested in a general circulation model. J. Climate, 11, 3204-3229. https://doi.org/10.1175/1520-0442(1998)011<3204:VHRRCS>2.0.CO;2
  19. Ha, K.-J., and J.-W. Kim, 1993: An experimental study of long-range forecasts: I. monthly mean forecast. AsiaPac. J. Atmos. Sci., 29, 37-52 (in Korean with English abstract).
  20. Heo, C.-H., and I.-S. Kang, 1996: A parameterization of the terrestrial radiation suitable for a climate model: absorption bands of water vapor. Asia-Pac. J. Atmos. Sci., 32, 29-39 (in Korean with English abstract).
  21. Hong, J.-H., and J.-B. Ahn, 2015: Changes of early summer precipitation in the Korean Peninsula and nearby regions based on RCP simulations. J. Clim., 28, 3557-3578, doi: 10.1175/JCLI-D-14-00504.1.
  22. Hur, J., and J.-B. Ahn, 2017: Assessment and prediction of the first-flowering dates for the major fruit trees in Korea using a multi-RCM ensemble. Int. J. Climatol., 37, 1603-1618. doi: 10.1002/joc.4800.
  23. Im, E.-S., and W.-T. Kwon, 2007: Characteristics of extreme climate sequences over Korea using a regional climate change scenario. SOLA, 3, 17-20, doi: 10.2151/sola.2007-005.
  24. Im, E.-S., J.-B. Ahn, and S.-R. Jo, 2015: Regional climate projection over South Korea simulated by the HadGEM2-AO and WRF model chain under RCP emission scenarios. Clim. Res., 63, 249-266, doi: 10.3354/cr01292.
  25. Im, E.-S., Y.-W. Choi, and J.-B. Ahn, 2016: Robust intensification of hydroclimatic intensity over East Asia from multi-model ensemble regional projections. Theor. Appl. Climatol., 129, 1241-1254, doi: 10.1007/s00704-016-1846-2.
  26. Im, E.-S., Y.-W. Choi, and J.-B. Ahn, 2017: Worsening of heat stress due to global warming in South Korea based on Multi-RCM ensemble projections. J. Geophy. Res., Atmosphere, 122, 11444-11461, doi: 10.1002/2017JD026731.
  27. IPCC, 2007: Climate change 2007: The Physical Science Basis. Contributions of Working Group I to the Forth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 996 pp.
  28. IPCC, 2013: Climate change 2013: The Physical Science Basis. Contributions of Working Group I to the Forth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 1585 pp.
  29. IPCC, 2021: Climate Change 2021, The Physical Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2391 pp.
  30. Jeon, D.-J., M. Ligaray, M. Kim, G. Kim, G. Lee, Y. A. Pachepsky, D.-H. Cha, and K. H. Cho, 2019: Evaluating the influence of climate change on the fate and transport of fecal coliform bacteria using the modified SWAT model. Sci. Total Environ., 658, 753-762, doi: 10.1016/j.scitotenv.2018.12.213.
  31. Jin, C.-S., D.-H. Cha, D.-K. Lee, M.-S. Suh, S.-Y. Hong, H.-S. Kang, and C.-H. Ho, 2016: Evaluation of climatological tropical cyclone activity over the western North Pacific in the CORDEX-East Asia multiRCM simulations. Clim. Dyn., 47, 765-778, doi: 10.1007/s00382-015-2869-6.
  32. Jo, S., J.-B. Ahn, D.-H. Cha, S.-K. Min, M.-S. Suh, Y.-H. Byun, and J.-U. Kim, 2019: The Koppen Trewartha climate-type changes over the CORDEX-East Asia phase 2 domain under 2 and 3℃ global warming. Geophys. Res. Lett., 46, 14030-14041, doi: 10.1029/2019GL085452.
  33. Jung, I.-W., H.-J. Kim, H.-J. Shin, J.-Y. Choi, M.-H. Kim, and J.-W. Kim, 2006: Development status of YONU AGCM, Proceedings of the spring meeting of the Korean Meteorological Society, 90-91 [Available online at https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE00944746] (in Korean).
  34. Jung, J.-H., J.-H. Oh, and J.-W. Kim, 1995: Preliminary verification of YONU GCM St14, Proceedings of the spring meeting of the Korean Meteorological Society, 35 pp (in Korean).
  35. Juzbasic, A., J.-B. Ahn, D.-H. Cha, E.-C. Chang, and S.-K. Min, 2022: Changes in heat stress considering temperature, humidity, and wind over East Asia under RCP8.5 and SSP5-8.5 scenarios. Int. J. Climatol., 42, 6579-6595. doi: 10.1002/joc.7636.
  36. Kang, H.-S., D.-H. Cha, and D.-K. Lee, 2005: Evaluation of the MM5/LSM coupled model for East Asian summer monsoon simulations, J. Geophys. Res., 110, D10105, doi: 1029/2004JD0005266. 1029/2004JD0005266
  37. Kang, I.-S., 1994: The scenario of temperature change in Korea associated with global warming (I). Asia-Pac. J. Atmos. Sci., 30, 247-260 (in Korean with English abstract).
  38. Kim, G., and Coauthors, 2018: Future change in extreme precipitation indices over Korea. Int. J. Climatol., 38, e862-e874, doi: 10.1002/joc.5414.
  39. Kim, G., and Coauthors, 2021: Evaluation and projection of regional climate over East Asia in CORDEX-East Asia phase I experiment, Asia-Pac. J. Atmos. Sci., 57, 119-134, doi: 10.1007/s13143-020-00180-8.
  40. Kim, J.-E., and S.-Y. Hong, 2007: Impact of soil moisture anomalies on summer rainfall over East Asia: a regional climate model study. J. Climate, 20, 5732-5743. https://doi.org/10.1175/2006JCLI1358.1
  41. Kim, J.-W., and K.-J. Ha, 1987: Climatic change and interannual fluctuations in the monthly amounts of precipitation at Seoul. Asia-Pac. J. Atmos. Sci., 23, 54-69.
  42. Kim, J.-W., and H.-J. Shin, 2005: Development of YONU AGCM. Proceedings of the spring meeting of the Korean Meteorological Society, 466-467 (in Korean).
  43. Kim, M.-K., I.-S. Kang, and C.-H. Kwak, 1999: The estimation of urban warming amounts due to urbanization in Korea for the recent 40 years. Asia-Pac. J. Atmos. Sci., 35, 118-126 (in Korean with English abstract).
  44. Kim, M.-K., M.-S. Han, D.-H. Jang, S.-G. Baek, W.-S. Lee, Y.-H. Kim, and S. Kim, 2012: Production technique of observation grid data of 1km resolution. J. Clim. Res., 7, 55-68 (in Korean with English abstract).
  45. Kim, M.-K., S. Kim, J. Kim, J. Heo, J.-S. Park, W.-T. Kwon, and M.-S. Suh, 2016: Statistical downscaling for daily precipitation in Korea using combined PRISM, RCM, and quantile mapping: Part 1, methodology and evaluation in historical simulation. Asia-Pac. J. Atmos. Sci., 52, 79-89, doi: 10.1007/s13143-016-0010-3.
  46. Kim, S.-S., 1979: Weather conditions with snowfall of more than 10 cm in South Korea. Asia-Pac. J. Atmos. Sci., 15, 1-10 (in Korean with English abstract).
  47. Kim, T.-J., M.-S. Suh, and E.-C. Chang, 2019: Prospect of climate changes for the mid and late 21st century using RegCM4.0 over CORDEX II East Asian region. Atmosphere, 29, 165-181, doi: 10.14191/Atmos.2019.29.2.165 (in Korean with English abstract).
  48. Kim, Y., Y. Choi, and S.-K. Min, 2022: Future changes in heat wave characteristics and their impacts on the electricity demand in South Korea. Weather. Clim. Extremes, 37, 100485, doi: 10.1016/j.wace.2022.100485.
  49. Kim, Y.-H., J.-B. Ahn, M.-S. Suh, D.-H. Cha, E.-C. Chang, S.-K. Min, Y.-H. Byun, and J.-U. Kim, 2023: Future changes in extreme heatwaves in terms of intensity and duration over the CORDEX-East Asia phase 2 domain using multi-GCM and multi-RCM chains. Environ. Res. Lett. (accepted).
  50. KIOST, 2019: Development of Climate Prediction Simulator and Ocean Observation for the Integrated Climate Prediction System. Korea Institute of Ocean Science & Technology, 25 pp (in Korean).
  51. KMA, 2012: 2012 Understanding Climate Change Scenarios and Use Casebook. Korea Meteorological Administration, 65 pp (in Korean).
  52. KMA, 2017: Climate Change Prospect Report on the Korean Peninsula in Preparation for the New Climate Regime. Korea Meteorological Administration, 153 pp (in Korean).
  53. KMA, 2022: 2022 Understanding Climate Change Scenarios and Use Casebook. Korea Meteorological Administration, 69 pp (in Korean).
  54. KMI, 2019: Meteorological?Earthquake See-At Technology Development Research Project Technology Introduction. Korea Meteorological Institute, 452 pp (in Korean).
  55. KMS, 2007: 50th anniversary. Korean Meteorological Society, 357 pp (in Korean).
  56. Lee, D., and Coauthors, 2016: Time of emergence of anthropogenic warming signals in the Northeast Asia assessed from multi-regional climate models. AsiaPac. J. Atmos. Sci., 52, 129-137, doi: 10.1007/s13143-016-0014-z.
  57. Lee, D., and Coauthors, 2017: Thermodynamic and dynamic contributions to future changes in summer precipitation over Northeast Asia and Korea: A multi-RCM study. Clim. Dyn., 49, 4121-4139, doi: 10.1007/s00382-017-3566-4.
  58. Lee, D., Coauthors, I.-H. Park, J.-B. Ahn, D.-H. Cha, E.-C. Chang, and Y.-H. Byun, 2022: Enhanced role of convection in future hourly rainfall extremes over South Korea. Geophys. Res. Lett., 42, e2022GL099727, doi:10.1029/2022GL099727.
  59. Lee, D.-K., and M.-S. Suh, 2000: Ten-year Asian summer monsoon simulation using a regional climate model (RegCM2). J. Geophys. Res., 105, 29565-29577, doi:10.1029/2000JD900438.
  60. Lee, D.-K., M.-S. Suh, and H. S. Kang, 2004: Regional climate simulation for the 1998 summer flood over East Asia. J. Meteor. Soc. Japan, 82, 1735-1753. https://doi.org/10.2151/jmsj.82.1735
  61. Lee, D.-K., M.-S. Suh, and S.-J. Choi, 2005: A sensitivity study of regional climate simulation to convective parameterization schemes for 1998 East Asian summer monsoon, Terr. Atmos. Ocean. Sci., 16, 989-1015, doi:10.3319/TAO.2005.16.5.989(RCS).
  62. Lee, D.-K., M.-S. Suh, C.-S. Jin, and S.-J. Choi, 2013: A regional climate change simulation over East Asia. Asia-Pac. J. Atmos. Sci., 49, 655-664, doi: 10.1007/s13143-013-0058-2.
  63. Lee, H., C.-S. Jin, D.-H. Cha, M. Lee, D.-K. Lee, M.-S. Suh, S.-Y. Hong, and H.-S. Kang, 2019: Future change in tropical cyclone activity over the western North Pacific in the CORDEX-East Asia multi-RCMs forced by HadGEM2-AO. J. Climate, 32, 5053-5067, doi:10.1175/JCLI-D-18-0575.1.
  64. Lee, H.-Y., J. S. Lee, B. Hall, E. Dlugokencky, S. M. Kim, and Y.-H. Kim, 2021: Inter-comparison activities of the WMO/GAW world calibration centre for SF6: a strategy for the high precision atmospheric measurements. J. Korean Soc. Atmos. Environ., 37, 512-522, doi: 10.5572/KOSAE.2021.37.3.512 (in Korean with English abstract).
  65. Lee, J., J. Kim, M.-A. Sun, B.-H. Kim, H. Moon, H. M. Sung, J. Kim, and Y.-H. Byun, 2020: Evaluation of the Korea Meteorological Administration Advanced Community Earth-System model (K-ACE). Asia-Pac. J. Atmos. Sci., 56, 381-395, doi: 10.1007/s13143-019-00144-7.
  66. Lee, J.-W., S.-Y. Hong, E.-C. Chang, M.-S. Suh, and H.-S. Kang, 2014: Assessment of future climate change over East Asia due to the RCP scenarios downscaled by GRIMs-RMP. Clim. Dyn., 42, 733-747, doi: 10.1007/s00382-013-1841-6.
  67. Lee, M., D.-H. Cha, M.-S. Suh, E.-C. Chang, J.-B. Ahn, S.-K. Min, and Y.-H. Byun, 2020: Comparison of tropical cyclone activities over the western North Pacific in CORDEX-East Asia phase I and II experiments, J. Climate. 33, 10593-10607, doi: 10.1175/JCLI-D-19-1014.1.
  68. Lee, M.-I., and I.-S. Kang, 1997: Temperature variability and warming in the Korean Peninsula. Asia-Pac. J. Atmos. Sci., 33, 429-443 (in Korean with English abstract).
  69. Lee, S.-M., J.-W. Kim, H.-K. Cho, and T.-Y. Lee, 1991: Research on the parameterized processes in climate models: I. the change of surrounding by a transient shallow cumulus. Asia-Pac. J. Atmos. Sci., 27, 257-266 (in Korean with English abstract).
  70. Lee, S.-M., 1993: The future of Korean atmospheric science. Atmosphere, 3, 28-34. [Available online at https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE00942559] (in Korean).
  71. Lee, T. Y., J. W. Kim, H. K. Cho, S. M. Lee, and K. H. Lee, 1992: Research on the parameterized processes in climate models: II. diurnal variation of stratocumulus- topped marine boundary layer. J. Korean Meteorol. Soc., 28, 9-28 (in Korean with English abstract).
  72. Lee, W.-S., 1999: A study on the ENSO using CGCM (Doctoral dissertation). Yonsei University, 170 pp (in Korean).
  73. NIMS, 2001: Advancement of Greenhouse Gas Reduction Technologies to Mitigate Climate Change; Development of Detection Techniques of Climate Change Signals. National Institute of Meteorological Sciences, 346 pp (in Korean).
  74. NIMS, 2003: Detection of Regional Climate Change Induced by Greenhouse Gas. National Institute of Meteorological Sciences, 380 pp (in Korean).
  75. NIMS, 2004: The Development of Regional Climate Change Scenario for the National Climate Change Report (III), National Institute of Meteorological Sciences. 510 pp (in Korean).
  76. NIMS, 2005: Development of Monitoring Technology for Background Atmosphere and Climate Change over Korean Peninsula. National Institute of Meteorological Sciences, 255 pp (in Korean).
  77. NIMS, 2007a: Korea's Climate. National Institute of Meteorological Sciences, 417 pp (in Korean).
  78. NIMS, 2007b: The Application of Regional Climate Change Scenario for the National Climate Change Report (III). National Institute of Meteorological Sciences, 178 pp (in Korean).
  79. NIMS, 2007c: 30th anniversary. National Institute of Meteorological Sciences, 411 pp (in Korean).
  80. NIMS, 2008: Development of Earth System Model. National Institute of Meteorological Sciences, 469 pp (in Korean).
  81. NIMS, 2012a: Development and Application of Methodology for Climate Change Prediction (IV). National Institute of Meteorological Sciences, 355 pp (in Korean).
  82. NIMS, 2012b: Global Climate Change Report 2012. National Institute of Meteorological Sciences, 100 pp (in Korean).
  83. NIMS, 2015: Development and Application of Methodology for Climate Change Prediction (VII). National Institute of Meteorological Sciences, 102 pp (in Korean).
  84. NIMS, 2018: Development and Application of Methodology for Climate Change Prediction (X). National Institute of Meteorological Sciences, 155 pp (in Korean).
  85. NIMS, 2019: Global Climate Change Prospect Report in response to IPCC 6th Assessment Report. National Institute of Meteorological Sciences, 33 pp (in Korean).
  86. NIMS, 2020a: Korean Peninsula Climate Change Prospect Report 2020. National Institute of Meteorological Sciences, 38 pp (in Korean).
  87. NIMS, 2020b: Report of Global Atmosphere Watch Special Edition. National Institute of Meteorological Sciences, 22 pp (in Korean).
  88. NIMS, 2021a: Development and application of technology for Asian dust and haze: research and development for KMA weather, climate, and earth system services. National Institute of Meteorological Sciences, 118 pp (in Korean).
  89. NIMS, 2021b: South Korea Detailed Climate Change Outlook Report. National Institute of Meteorological Sciences, 58 pp (in Korean).
  90. Min, S.-K., S. Legutke, A. Hense, U. Cubach, W.-T. Kwon, J-H. Oh and U. Schlese, 2006: East Asian climate change in the 21st century as simulated by the coupled climate model ECHO-G under IPCC SRES scenarios. J. Meterol. Soc. Japan, 84, 1-26. https://doi.org/10.2151/jmsj.84.1
  91. MSIT, MOTIE, MOLIT, ME, and MOHW, 1996: List of leading technology development projects for 1995 (G7 project). Ministry of Science and ICT, Ministry of Trade, Industry and Energ y, Ministry of Land, Infrastructure and Transport, Ministry of Environment, Ministry of Health and Welfare, 376 pp [Available online at https://www.codil.or.kr/viewDtlConRpt.do;jsessionid=rVxKbfjScsUGKrkH6BGtvMu0QehjhC0ZkCQAVJWfdVPU95uHpjh91gY8j7oXJT61.codil_servlet_engine1?pMetaCode=OTMCRK050796&gubun=rpt] (in Korean).
  92. Oh, H.-T., H.-J. Kim, and J.-W. Kim, 2000: A Study on the Improvement of the Surface Scheme and the Performance of YONU AGCM, Proceedings of the spring meeting of the Korean Meteorological Society, 73-76 (in Korean).
  93. Oh, J.-H., J.-H. Jung, and J.-W. Kim, 1994a: Radiative transfer model for climate studies. Asia-Pac. J. Atmos. Sci., 30, 261-287.
  94. Oh, J.-H., C.-E. Park, J.-W. Kim, and H.-J Seang, 1994b: Impact of climatic change in Korea due to CO2 doubling (scenarios for the precipitation change). AsiaPac. J. Atmos. Sci., 30, 335-362 (in Korean with English abstract).
  95. Oh, J.-H., T. Kim, M.-K. Kim, S.-H. Lee, S.-K. Min, and W.-T. Kwon, 2004: Regional climate simulation for Korea using dynamic downscaling and statistical adjustment. J. Meteor. Soc. Japan, 82, 1629-1643. https://doi.org/10.2151/jmsj.82.1629
  96. Oh, S.-G., J.-H. Park, S.-H. Lee, and M.-S. Suh, 2014: Assessment of the RegCM4 over East Asia and future precipitation change adapted to the RCP scenarios. J. Geophys. Res. Atmos., 119, 2913-2927, doi: 10.1002/2013JD020693.
  97. Oh, S.-G., and Coauthors, 2016: Projections of high resolution climate changes for South Korea using multipleregional climate models based on four RCP scenarios. part 2: precipitation. Asia-Pac. J. Atmos. Sci., 52, 171-189, doi: 10.1007/s13143-016-0017-9.
  98. Oh, S.-G., and M.-S. Suh, 2018: Changes in seasonal and diurnal precipitation types during summer over South Korea in the late twenty-first century (2081~2100) projected by the RegCM4.0 based on four RCP scenarios. Clim. Dyn., 51, 3041-3060, doi: 10.1007/s00382-017-4063-5.
  99. Oh, Y., and Coauthors, 2018: Characteristics of greenhouse gas concentration derived from ground-based FTS spectra at Anmyeondo, South Korea. Atmos. Meas. Tech., 11, 2361-2374, doi: 10.5194/amt-11-2361-2018.
  100. Park, C., S.-K. Min, D. Lee, D.-H. Cha, M.-S. Suh, H.-S. Kang, S.-Y. Hong, D.-K. Lee, H.-J. Baek, K.-O. Boo, and W.-T. Kwon, 2016: Evaluation of multiple regional climate models for summer climate extremes over East Asia. Clim. Dyn., 46, 2469-2486, doi: 10.1007/s00382-015-2713-z.
  101. Kang, S.-Y., and Hong, D.-K., 2019: Multi-RCM near-term projections of summer climate extremes over East Asia. Clim. Dyn., 52, 4937-4952, doi: 10.1007/s00382-018-4425-7.
  102. Kang, S.-Y., D.-H. Cha, G. Kim, G. Lee, D.-K. Lee, M.-S. Suh, S.-Y. Hong, J.-B. Ahn, and S.-K. Min, 2020: Evaluation of summer precipitation over far East Asia and South Korea simulated by multiple regional climate models, Int. J. Climatol., 40, 2270-2284, doi: 10.1002/joc.6331.
  103. Kang, S.-Y., S.-W. Shin, G. Kim, D.-H. Cha, S.-K. Min, D. Lee, Y.-H. Byun, and J.-U. Kim, 2022: What determines future changes in photovoltaic potential over East Asia? Renew. Energ., 185, 338-347, doi: 10.1016/j.renene.2021.12.029.
  104. Park, J., 2000: Prediction of Global Warming in the Period of Double Increase of CO2 Using YEONU CGCM. (Doctoral dissertation, Yonsei University). 144 pp (in Korean).
  105. Park, S.-H., and S.-Y. Hong, 2004: The role of surface boundary forcing over south Asia in the Indian summer monsoon circulation: a regional climate model sensitivity study. Geophys. Res. Lett., 31, L12112, doi: 10.1029/2004GL019729.
  106. Rodgers, K.-B., and Coauthors, 2021: Ubiquity of humaninduced changes in climate variability. Earth Syst. Dynam., 12, 1393-1411, doi: 10.5194/esd-2021-50.
  107. Seo, G.-Y., Y.-W. Choi, and J.-B. Ahn, 2019: Near future projection of extreme temperature over CORDEXEast Asia phase 2 region using the WRF model based on RCP scenarios. Atmosphere, 29, 585-597 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2019.29.5.585
  108. Seol, K.-H., and S.-Y. Hong, 2009: The relation between the Tibetan snow in spring and the East Asia summer monsoon in 2003: A Global and regional model study. J. Climate, 22, 2095-2110. https://doi.org/10.1175/2008JCLI2496.1
  109. SNU, 2015: Estimation of Background Aerosol Climate Forcing over the Korean Peninsula, Seoul National University, 154 pp (in Korean).
  110. So, B.-J., J.-Y. Kim, H.-H. Kwon, and C. H. R. Lima, 2017: Stochastic extreme downscaling model for an assessment of changes in rainfall intensity-durationfrequency curves over South Korea using multiple regional climate models. J. Hydrol., 553, 321-337, doi: 10.1016/j.jhydrol.2017.07.061.
  111. Song, M.-D., H.-Y., Jeon, and J.-W. Kim, 1999: A study on the development of parametric method of Gravity Wave Drag Induced by Convection (GWDC) and its effect on YUGCM ST15. Proceedings of the spring meeting of the Korean Meteorological Society, 141-144 (in Korean).
  112. Suh, M.-S., S.-G. Oh, D.-K. Lee, D.-H. Cha, S.-J. Choi, C.-S. Jin, and S.-Y. Hong, 2012: Development of new ensemble methods based on the performance skills of regional climate models over South Korea. J. Clim., 25, 7067-7082, doi: 10.1175/JCLI-D-11-00457.1.
  113. Suh, M.-S., and Coauthors, 2016: Projections of high resolution climate changes for South Korea using multipleregional climate models based on four RCP scenarios. part 1: surface air temperature. Asia-Pac. J. Atmos. Sci., 52, 151-169, doi: 10.1007/s13143-016-0017-9.
  114. Sung, H. M., and Coauthors, 2021: Climate change projection in the 21st century simulated by NIMS-KMA CMIP6 model based on new GHGs concentration pathways. Asia-Pac. J. Atmos. Sci., 57. 851-862, doi:10.1007/s13143-021-00225-6.
  115. Wallace, J. M., and P. V. Hobbs, 1977: Atmospheric Science: An Introductory Survey. Academic Press, 467 pp.
  116. Wengel, C., S.-S. Lee, M. F. Stuecker, A. Timmermann, J.-E. Chu and F. Schloesser, 2021: Future high-resolution El Nino/Sourthern Oscillation dynamics. Nat. Clim. Change, 11, 758-765, doi: 10.1038/s41558-021-01132-4.
  117. Wu, F.-T., S.-Y. Wang, C.-B. Fu, Y. Qian, Y. Gao, D.-K. Lee, D.-H. Cha, J.-P. Tang, and S.-Y. Hong, 2016: Evaluation and projection of summer extreme precipitation over East Asia in the regional model intercomparison project. Clim. Res., 69, 45-58, doi: 10.3354/cr01384.
  118. Yhang, Y.-B., and S.-Y. Hong, 2008: A simulated climatology of the East Asian summer monsoon using a regional spectral model. Asia-Pac. J. Atmos. Sci., 44, 325-339.