DOI QR코드

DOI QR Code

INERTIAL PROXIMAL AND CONTRACTION METHODS FOR SOLVING MONOTONE VARIATIONAL INCLUSION AND FIXED POINT PROBLEMS

  • Jacob Ashiwere Abuchu (School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Department of Mathematics, University of Calabar) ;
  • Godwin Chidi Ugwunnadi (Department of Mathematics, University of Eswatini, Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University) ;
  • Ojen Kumar Narain (School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal)
  • Received : 2022.03.26
  • Accepted : 2022.09.17
  • Published : 2023.03.03

Abstract

In this paper, we study an iterative algorithm that is based on inertial proximal and contraction methods embellished with relaxation technique, for finding common solution of monotone variational inclusion, and fixed point problems of pseudocontractive mapping in real Hilbert spaces. We establish a strong convergence result of the proposed iterative method based on prediction stepsize conditions, and under some standard assumptions on the algorithm parameters. Finally, some special cases of general problem are given as applications. Our results improve and generalized some well-known and related results in literature.

Keywords

Acknowledgement

The authors sincerely appreciate the anonymous referees and the handling Editor for their constructive comments and fruitful suggestions which have immensely improved the earlier version of the manuscript.

References

  1. J.A. Abuchu, G.C. Ugwunnadi and O.K. Narain, Inertial Mann-type Iterative method for solving split monotone variational inclusion problem with applications, J. Ind. Manag. Optim., (2022), doi:10.3934/jimo.2022075. 
  2. F. Akutsah, O.K. Narain and J.K. Kim, Improved generalized M-iteration for quasi-nonexpansive multivalued mappings with application in real Hilbert spaces, Nonlinear Funct. Anal. Appl., 27(1) (2022), 59-62.  https://doi.org/10.22771/NFAA.2022.27.01.04
  3. M. Alansari, M. Farid and R. Ali, An iterative scheme for split monotone variational inclusion, variational inequality and fixed point problems, Adv. Diff. Equ., (2020), https://doi.org/10.1186/s13662-020-02942-0. 
  4. F. Alvarez, Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space, SIAM J. Optim., 14 (2004), 773-782.  https://doi.org/10.1137/S1052623403427859
  5. F. Alvarez and H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 9 (2001), 3-11.  https://doi.org/10.1023/A:1011253113155
  6. Q.H. Ansari and J.C. Yao, A fixed point theorem and its applications to a system of variational inequalities, Bull. Austr. Math. Soc., 59 (1999), 433-442.  https://doi.org/10.1017/S0004972700033116
  7. H. Attouch, A. Cabot and A.Z. Chbani, Inertial forward-Backward algorithms with perturbations: application to Tikhonov regularization, J. Optim. Theory Appl., 19(1) (2018), 1-36.  https://doi.org/10.1007/BF00934047
  8. S. Baiya and K. Ungchittrakool, Accelerated hybrid algorithms for nonexpansive mappings in Hilbert spaces, Nonlinear Funct. Anal. Appl., 27(3) (2022), 553-568.  https://doi.org/10.22771/NFAA.2022.27.03.06
  9. H.H. Bauschke and P.L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, Springer(2011), (CMS Books in Mathematics). 
  10. R.S. Burachik, A.N. Iusem and B.F. Svaiter, Enlargement of monotone operators with applications to variational inequalities, Appl. Set-Valued Anal. Optim., 5 (1997), 159-180.  https://doi.org/10.1023/A:1008615624787
  11. C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction,, Inverse Prob., 20 (2003). 
  12. X.J. Cai, G.Y. Gu and B.S. He, On the O($\frac{1}{t}$) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators, Comput. Optim. Appl., 57 (2014), 339-363.  https://doi.org/10.1007/s10589-013-9599-7
  13. A. Cegielski, Landweber-type operator and its properties. A panorama of mathematics: pure and applied, Amer. Math. Soc., (2016), 139-148. 
  14. Y. Censor, T. Bortfeld, B. Martin and A. Trofimov, A unifed approach for inversion problems in intensity modulated radiation therapy, Phys. Med. Biol., 51 (2006), 2353-2365.  https://doi.org/10.1088/0031-9155/51/10/001
  15. C.S. Chuang, Algorithms with new parameter conditions for split variational inclusion problems in Hilbert spaces with application to split feasibility problem, Optimization, 65(4) (2016), http://dx.doi.org/10.1080/02331934.2015.1072715. 
  16. P.L. Combettes and V.R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul., 4 (2005), 1168-1200.  https://doi.org/10.1137/050626090
  17. M. Dilshad, A.F. Aljohani and M. Akram, Iterative scheme for split variational inclusion and a fixed point problem of a finite collection of Nonexpansive mappings, J. Funct. Spaces, (2020), Article ID 3567648, 10 pages, https://doi.org/10.1155/2020/3567648. 
  18. Q.L. Dong, Y.J. Cho and T.M. Rassias, The projection and contraction methods for finding common solutions to variational inequality problems, Optim. Lett., 12 (2018), 1871-1896.  https://doi.org/10.1007/s11590-017-1210-1
  19. Q.L. Dong, Y.J. Cho, L.L. Zhong and M.T.H. Rassias, Inertial projection and contraction algorithms for variational inequalities, J. Glob. Optim., 70 (2018), 687-704.  https://doi.org/10.1007/s10898-017-0506-0
  20. L.Q. Dong, J.F. Yang and H.B. Yuan, The projection and contraction algorithm for solving variational inequality problems in Hilbert space, J. Nonlinear Convex Anal., 20(1) (2019), 111-122. 
  21. Y.P. Fang and N.J. Huang, H-monotone operator and resolvent operator technique for variational inclusion, Appl. Math. Comput., 145 (2006), 795-803.  https://doi.org/10.1016/S0096-3003(03)00275-3
  22. M.C. Ferris and J.S. Pang, Engineering and economic applications of complementarity problems, SIAM Review, 39(4) (1997), 669-713.  https://doi.org/10.1137/S0036144595285963
  23. A. Gibali and D.V. Thong, Tseng type methods for solving inclusion problems and its applications, Calcolo, 55 (2018), 1-22.  https://doi.org/10.1007/s10092-018-0244-9
  24. K. Goebel and W.A. Kirk, Topics in Metric Fixed Point Theory, J. Fixed Point Theory Appl. 20(16) (2018), https://doi.org/10.1007/s11784-018-0501-1. 
  25. B.S. He, A class of projection and contraction methods for monotone variational inequalities, Appl. Math. Optim., 35 (1997), 69-76.  https://doi.org/10.1007/BF02683320
  26. N.J. Huang, A new completely general class of variational inclusions with noncompact valued mappings, Comput. Math. Appl., 35(10) (1998), 9-14.  https://doi.org/10.1016/S0898-1221(98)00067-4
  27. J.S. Jung, General iterative algorithms for monotone inclusion, variational inequality and fixed point problems, J. Korean Math. Soc., 58 (2021), 525-552, https://doi.org/10.4134/JKMS.j180808. 
  28. N. Kaewyong and K. Sitthithakerngkiet, Modified Tsengs method with inertial viscosity type for solving inclusion problems and Its application to image restoration problems, MDPI, Mathematics, 9(10), (2021), https://doi.org/10.3390/math9101104. 
  29. S.A. Khan, S. Suantai and W. Cholamjiak, Shrinking projection methods involving inertial forward-backward splitting methods for inclusion problems, RACSAM, 113 (2019), 645-656, DOI: https://doi.org/ 10.1007/s13398-018-0504-1. 
  30. D.A. Lorenz and T. Pock, An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vis., 51 (2015), 311-325.  https://doi.org/10.1007/s10851-014-0523-2
  31. B. Martinet, Re'gularisation d'in e'quations variationnelles par approximations successives. Rev. Francaise Informat. Recherche Op'erationnelle. 4 (1970), 154-158. 
  32. A. Moudafi, Split monotone variational inclusions, J. Optim. Theory Appl., 150 (2011), 275-283.  https://doi.org/10.1007/s10957-011-9814-6
  33. A. Moudafi and M. Oliny, Convergence of a splitting inertial proximal method for monotone operators, J. Comput. Appl. Math., 155(2003), 447-454.  https://doi.org/10.1016/S0377-0427(02)00906-8
  34. K. Muangchoo, A new explicit extragradient method for solving equilibrium problems with convex constraints , Nonlinear Funct. Anal. Appl., 27(1) (2022), 1-22.  https://doi.org/10.22771/NFAA.2022.27.01.01
  35. G.B. Passty, Ergodic convergence to a zero of the sum of monotone operators in Hilbert space, J. Math. Anal. Appl., 72 (1979), 383-390.  https://doi.org/10.1016/0022-247x(79)90234-8
  36. P. Phairatchatniyom, P. Kumam, Y.J. Cho. W. Jirakitpuwapat and K. Sitthithakerngkiet, The modified inertial iterative algorithm for solving split variational inclusion problem for multi-valued quasi-nonexpansive mappings with some applications, MDPI, Mathematics, 7(6) (2019), doi:10.3390/math7060560. 
  37. S. Reich, Extension problems for accretive sets in Banach spaces, J. Funct. Anal., 26 (1977), 378-395.  https://doi.org/10.1016/0022-1236(77)90022-2
  38. R.T. Rockafellar, Monotone operators and the proximal point algorithms, SIAM J. Control Optim., 14(5) (1976), 877-898.  https://doi.org/10.1137/0314056
  39. M.V. Solodov and B.F. Svaiter, A hybrid projection-proximal point algorithm, J. Convex Anal., 6(1) (1999), 59-70. 
  40. D.F. Sun, A class of iterative methods for solving nonlinear projection equations, J. Optim. Theory Appl., 91 (1996), 123-140.  https://doi.org/10.1007/BF02192286
  41. N.D. Truong, J.K. Kim and T.H.H. Anh, Hybrid inertial contraction projection methods extended to variational inequality problems, Nonlinear Funct. Anal. Appl., 27(1) (2022), 203-220.  https://doi.org/10.22771/NFAA.2022.27.01.13
  42. P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 38 (2000), 431-446.  https://doi.org/10.1137/S0363012998338806
  43. Y. Yao, Y. Shehu, X.H. Li and Q.L. Dong, A method with inertial extrapolation step for split monotone inclusion problems, Optimization, 70(4) (2021), 741-761. https://doi.org/10.1080/02331934.2020.1857754 
  44. H. Zegeye, An iterative approximation method for a common fixed point of two pseudocontractive mappings, ISRN Math. Anal., (2011), Article ID 621901, https://doi.org/10.5402/2011/621901. 
  45. L.C. Zeng, S.M. Guu and J.C. Yao, Characterization of H-monotone operators with applications to variational inclusions, Comput Math Appl., 50(4) (2005), 329-337.  https://doi.org/10.1016/j.camwa.2005.06.001
  46. C. Zhang and Y. Wang, Proximal algorithm for solving monotone variational inclusion, Optimization, 67(8) (2018), 1197-1209, DOI: 10.1080/02331934.2018.1455832. 
  47. T. Zhao, D. Wang, L. Ceng, L. He, C. Wang and H. Fan, Quasi-inertial Tsengs extragradient algorithms for pseudomonotone variational inequalities and fixed point problems of quasi-nonexpansive operators, Numer. Funct. Anal. Optim., 42(1) (2021), 69-90, https://doi.org/10.1080/01630563.2020.1867866.