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Abstract. Our aim in this paper is to give some new proofs to fixed point theorems due

to Abdou [1] for mappings satisfying Reich type contractions in modular metric spaces. We

removed the restriction that ω satisfies the ∆2-type condition imposed on the results of [1].

Furthermore, Lemma 2.6 of [1] which was crucial in the proofs of the results of [1] is not

needed in the proofs of our results. Our method of proof is simpler and interesting.

1. Introduction

The famous Banach contraction mapping principle was proved in 1922 by
Banach [3]. Interests in the results of Banach [3] is due to its applications
in solving problems in physics, economics, computer science, engineering,
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telecommunication and management sciences. Several well-known mathemati-
cians have extended the Banach contraction mapping principle to spaces like
multiplicative metric spaces, complex valued metric spaces, b-metric spaces,
modular metric spaces, G-metric spaces, cone metric spaces and so on. The
first mathematician who successfully extended the results of [3] to multival-
ued mappings was Nadler [7]. This extension was interesting because it found
several applications in economics, differential inclusions, convex optimization
and control theory. Consequently, several well-known authors have extensively
studied the Nadler fixed point theorem [7].

In 1972, Reich [15] generalized Nadler’s fixed point theorem. The following
is the statement of Reich’s fixed point theorem: a mapping T : X → K(X ),
where K(X ) is the family of every nonempty compact subsets of the set X,
has a fixed point if it satisfies

H(Tx, Ty) ≤ k(d(x, y))d(x, y)

for each x, y ∈ X with x 6= y, where k : (0,∞) → [0, 1) is such that
lim supr→t+ k(r) < 1 for each t ∈ (0,∞).

In 1974, Reich [16] posed an open question whether the results of [15] will
hold if T takes values in CB(X ) instead of K(X ), where CB(X ) is the family
of every nonempty closed and bounded subsets of X. A partial answer to this
Reich’s open question was given in 1989 by Mizoguchi and Takahashi [6].

The concept of modular metric spaces was introduced in 2010 by Chistyakov
[4, 5] as a generalization of the classical modulars over linear spaces such
as Orlicz spaces. In 2016, Abdou [1] proved some interesting theorems for
mappings satisfying Reich contraction in modular metric spaces. Readers
interested in studies in this direction may consult ([8, 9, 10, 11, 12, 13, 14])
and the references therein.

Motivated by the results above, we give some new proofs to fixed point
theorems due to Abdou [1] for mappings satisfying Reich type contractions in
modular metric spaces. We removed the restriction that ω satisfies the ∆2-
type condition imposed on the results of [1]. Furthermore, Lemma 2.6 of [1]
which was crucial in the proofs of the results of [1] is not needed in the proofs
of our results. Our method of proof is simpler and interesting.

2. Preliminaries

We begin this section by recalling some definitions and results which will
be useful in this paper.



New proofs of some fixed point theorems 3

Definition 2.1. ([4]) Let X be a nonempty set. A modular metric on a set
X is a function ω : (0,∞)×X ×X → [0,∞] satisfying, for all x, y, z ∈ X, the
following three properties:

(1) ωλ(x, y) = 0 for all λ > 0 if and only if x = y;
(2) ωλ(x, y) = ωλ(y, x) for all λ > 0;
(3) ωλ+ν(x, y) ≤ ωλ(x, z) + ων(z, y) for λ,ν > 0.

Then the pair (X,ω) is called a modular metric space. Throughout this paper,
we take Xω or (X,ω) to be modular metric space. If, instead of (1), we have
the following condition.

(1)’ ωλ(x, x) = 0 for all λ > 0 and x ∈ Xω.

Then ω is said to be a pseudomodular metric on Xω. A modular metric ω is
said to be regular if the following weaker condition of (1) is satisfied:

(1)” x = y if and only if ωλ(x, x) = 0, for some λ > 0.

Definition 2.2. ([4]) A function ω : (0,∞) × X × X → [0,∞] is said to be
a convex modular metric on a set X if it satisfies the axioms (1) and (2) of
Definition 2.1 as well as the following axiom:

(4) ωλ+ν(x, y) ≤ ω λ
λ+ν

(x, z) + ω ν
λ+ν

(z, y) for λ, ν > 0 and x, y, z ∈ X.

If, instead of (1), we have only condition (1)’ of Definition 2.1, then ω is called
a convex pseudomodular metric on X.

Definition 2.3. ([4]) Given a pseudomodular ω on X, along with the modular
set Xω. For given x0 ∈ X, set

Xω ≡ Xω(x0) = {x ∈ X : ωλ(x, x0) = 0 as λ→∞}
and

X∗ω ≡ X∗ω(x0) = {x ∈ Xω : ∃ λ(x) = λ > 0 such that ωλ(x, x0) <∞}.
Then Xω and X∗ω are said to be modular spaces centered at x0.

Observe that if ω is a modular on X, then dω(x, y) = inf{t > 0 : ωt(x, y) ≤
t} for any x, y ∈ Xω, defines a distance on Xω. If ω is convex, then we have
X∗ω = Xω, (see, e.g. [4, 5]). Observe that d∗ω, given by d∗ω(x, y) = inf{t > 0 :
ωt(x, y) ≤ 1}, for any x, y ∈ Xω is a metric.

Remark 2.4. For any xi ∈ X, the set

Xω(xi) = {x ∈ X such that lim
λ→∞

ωλ(x, xi) = 0}

is called a modular metric space generated by xi and induced by ω. If its
generator xi does not play any role in this case (that is, Xω is independent of
generators), we shall write Xω instead of Xω(xi).
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Remark 2.5. For any x, y ∈ Xω, if a modular metric ω on Xω has a finite
value and ωλ(x, y) = ωµ(x, y) for all λ, µ > 0, then ρ(x, y) = λωλ(x, y) is a
metric on Xω.

Definition 2.6. ([1]) Let ω be a modular metric defined on X.

(1) We say that {xn}n∈N ⊂ Xω is ω-convergent to a ∈ Xω if ω1(xn, a)→ 0,
as n→∞. In this case, a is said to be an ω-limit of {xn}n∈N.

(2) We say that {xn}n∈N ⊂ Xω is ω-Cauchy if ω1(xn, xm)→ 0, as n,m→
∞.

(3) We say that M ⊂ Xω is closed if the ω-limit of an ω-convergent se-
quence of M is in M .

(4) We say that M ⊂ Xω is ω-complete if every ω-Cauchy sequence in M
is ω-convergent and its ω-limit belong to M .

(5) We say that M ⊂ Xω is ω-bounded provided

δω(M) = sup{ω1(a, b); a, b ∈M} <∞.
(6) We say that M ⊂ Xω is ω-compact if for any {xn} in M there exists

a subsequence {xnk} of {xn} and x ∈M such that ω1(xnk , x)→ 0.
(7) ω is said to satisfy the Fatou property if we have

ω1(x, y) ≤ lim inf
n→∞

ω1(xn, y)

for any {xn}n∈N in Xω which is ω-convergent to x, and for any y ∈ Xω.

If lim
n→∞

ωα(xn, x) = 0, for some α > 0, then lim
n→∞

ωα(xn, x) = 0 may not

necessary happen for all α > 0. We say that ω satisfies the ∆2-condition if
lim
n→∞

ωα(xn, x) = 0, for some α > 0 implies that lim
n→∞

ωα(xn, x) = 0 for all

α > 0.

Definition 2.7. ([1]) Let (Xω, ω) be a modular metric space, for all λ > 0, we
say that ω satisfies ∆2-type condition if for α > 0, there exists Cα > 0 such
that

ω λ
α

(x, y) ≤ Cαωλ(x, y),

for all x, y ∈ Xω, with y 6= x, and any λ > 0.

Lemma 2.8. ([2]) Let (X,ω) be a modular metric space where ω is convex
and regular. Assume that ω satisfies the ∆2-type condition. Let {xn} be in Xω

such that ω1(xn+1, xn) ≤ Kαn, n = 1, 2, · · · , where K is an arbitrary nonzero
constant and α ∈ (0, 1). Then {xn} is Cauchy for both ω and d∗ω.

Following the notations in [1], let M be a nonempty subset of a modular
metric space Xω. Set

(1) C(M) = {B : B is nonempty and ω − closed subset of M};
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(2) CB(M) = {B : B is nonempty, ω−closed and ω−bounded subset of M};
(3) Define the Hausdorff modular metric on CB(M) by

Hω(C1, C2) = max{ sup
a∈C1

ω1(a,C2), sup
b∈C2

ω1(b, C1)},

where ω1(a,C) = infb∈C ω1(a, b).

Definition 2.9. ([1]) Let (Xω, ω) be a modular metric space and M be
a nonempty subset of Xω. A mapping T : M → CB(M) is called a Re-
ich contraction mapping if there exists k : (0,∞) → [0, 1) which satisfies
lim sups→t+ k(s) < 1 for any t ∈ [0,∞), such that for any different a, b ∈ M ,
we have

Hω(T (a), T (b)) ≤ k(ω1(a, b))ω1(a, b). (2.1)

Lemma 2.10. ([2]) Let (Xω, ω) be a modular metric space and M be a nonempty
subset of Xω. Let A,B ∈ CB(M). Then, for each ε > 0 and x ∈ A there exists
y ∈ B such that ω1(x, y) ≤ Hω(A,B) + ε. Moreover, if B is ω-compact and ω
satisfies the Fatou property, then for any x ∈ A there exists y ∈ B such that
ω1(x, y) ≤ Hω(A,B).

By the results of [1], Lemma 2.10 allows an alternative definition to Reich
multivalued mappings as follows;

Definition 2.11. Let M be a nonempty subset of a modular metric space Xω.
The mapping T : M → CB(M) is called a Reich-type multivalued mapping if
there exists distinct x, y ∈M , a ∈ T (x) and b ∈ T (y) such that

d(a, b) ≤ β(d(x, y))d(x, y), (2.2)

where β = 1
2(1 + α) satisfying lim sups→t+ α(s) < 1 for any t ∈ [0,∞).

A point x ∈ M is said to be a fixed point of T if x ∈ Tx. The set of fixed
points of T will be denoted by Fix(T ), that is, Fix(T ) = {x ∈M : x ∈ Tx}.

3. Main results

We shall give a proof of Reich multivalued mapping in modular metric space
as discussed in [1] by relaxing the ∆2-type condition and Lemma 2.8 will not
be applied.

Theorem 3.1. Let M be a nonempty ω-complete subset of a complete modular
metric space (Xω, ω). Let F : M → C(M) be a multi-valued mapping such that
there exists κ : (0,∞) → [0, 1) with lim sups→τ+ κ(s) < 1, for any τ ∈ [0,∞),
for any distinct x, y ∈M,λ > 0 and a ∈ F (x), there exists b(6= a) ∈ F (y) such
that

ωλ(a, b) ≤ κ(ωλ(x, y))ωλ(x, y). (3.1)
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Then F has a fixed point x∗ ∈M.

Proof. We shall prove by contradiction. Suppose that F has no fixed point,
that is, x∗ /∈ F (x∗), then for any λ > 0, ωλ(x∗, F (x∗)) > 0 in M ⊂ Xω. For
every τ > 0, α, β > 0, let α(τ), β(τ) > 0 be such that τ < s ≤ τ + β(τ) which
implies that κ(s) < α(τ) < 1. Let x1 ∈ M ⊂ Xω so that ωλ(x∗, x1) < ∞. Let
xn ∈ F (xn−1) such that 0 ≤ εn < 1

n for some n ∈ N,

(1 + εn)κ(ωλ(xn−1, xn)) < 1

and

ωλ(xn−1, xn) ≤ (1 + εn)ωλ(xn−1, F (xn)). (3.2)

Set τn = ωλ(xn, F (xn)), for δn > 0, take 0 < δn <
1

κ(ωλ(xn−1, xn))
− 1 so that

εn+1 = min{δn,
1

n+ 1
,

1

α(τn)
− 1,

β(τn)

τn
},

for n ∈ N, then choose xn+1 ∈ F (xn) such that

ωλ(xn, xn+1) ≤ (1 + εn+1)ωλ(xn, F (xn)).

Hence, we have

τn ≤ ωλ(xn, xn+1) < τn + β(τn).

Suppose that there exists y ∈ F (xn) such that ωλ(xn, y) = ωλ(xn, F (xn)),
then we take y = xn+1 and εn+1 = 0. Otherwise, we have τn < ωλ(xn, xn−1),
hence κ(ωλ(xn, xn+1)) < α(τn). Therefore, in any case, xn+1 satisfies, (1 +
εn+1)κ(ωλ(xn, xn+1)) < 1 and

ωλ(xn, xn+1) ≤ (1 + εn+1)ωλ(xn, F (xn)). (3.3)

From inequalities (3.2) and (3.3), we get

ωλ(xn, xn+1) ≤(1 + εn+1)ωλ(xn, F (xn))

=(1 + εn+1)ωλ(F (xn−1), F (xn))

≤(1 + εn+1)κ(ωλ(xn−1, xn))ωλ(xn−1, xn)

≤(1 + δn)κ(ωλ(xn−1, xn))ωλ(xn−1, xn)

<ωλ(xn−1, xn). (3.4)
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Now, −ωλ(xn+1, F (xn+1)) ≥ −κ(ωλ(xn, xn+1))ωλ(xn, xn+1) for λ > 0, so that

ωλ(xn, F (xn))− ωλ(xn+1, F (xn+1))

≥ ωλ(xn, F (xn))− κ(ωλ(xn, xn+1))ωλ(xn, xn+1)

= ωλ(xn, xn+1)− κ(ωλ(xn, xn+1))ωλ(xn, xn+1)

≥
( 1

1 + εn+1
− κ(ωλ(xn, xn+1))

)
ωλ(xn, xn+1)

> 0. (3.5)

Thus, by induction, we obtained a sequence {xn}n≥1 ⊆ M ⊂ Xω such that
xn+1 ∈ F (xn), and {ωλ(xn, xn+1)}n≥1, {ωλ(xn, F (xn))}n≥1 are both strictly
decreasing sequences. Thus ωλ(xn, xn+1) ↓ τ as n→∞ for some τ ≥ 0, λ > 0.
Observe that by the hypothesis on κ, we have that

lim sup
n→∞

κ(ωλ(xn, xn+1)) < 1

for any λ > 0. Hence

lim inf
n→∞

( 1

1 + εn+1
− κ(ωλ(xn, xn+1))

)
> 0.

Again, from inequality (3.5), suppose that there exists ρ > 0 such that for
n ≥ 1 large, we have

ρωλ(xn, xn+1) ≤ ωλ(xn, F (xn))− ωλ(xn+1, F (xn+1)). (3.6)

Since {ωλ(xn, F (xn))}n≥1 is convergent, for m > n large, we have

ωλ(xn, xm) ≤ ω λ
m−n

(xn, xn−1) + ω λ
m−n

(xn−1, xn−2) + ω λ
m−n

(xn−2, xn−3)

+ ω λ
m−n

(xn−3, xn−4) + · · ·+ ω λ
m−n

(xm−1, xm)

≤ ω λ
m

(xn, xn−1) + ω λ
m

(xn−1, xn−2) + ω λ
m

(xn−2, xn−3)

+ ω λ
m

(xn−3, xn−4) + · · ·+ ω λ
m

(xm−1, xm)

≤
m−1∑
k=n

ωλ(xk, xk+1)

≤ 1

ρ

m−1∑
k=n

(
ωλ(xk, F (xk))− ωλ(xk+1, F (xk+1))

)
≤ 1

ρ

(
ωλ(xn, F (xn))− ωλ(xm, F (xm))

)
→ 0,
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as n → ∞. Hence, {xn}n≥1 is a ω-Cauchy sequence, so xn → x∗ ∈ M ⊂ Xω

as n→∞, since M is complete. Therefore, we have

ωλ(F (xn), F (x∗)) ≤ κ(ωλ(xn, x
∗))ωλ(xn, x

∗),

which implies that

ωλ(x∗, F (x∗)) = ωλ(xn+1, F (x∗))

≤ κ(ωλ(xn, x
∗))ωλ(xn, x

∗) (3.7)

≤ ωλ(xn, x
∗)

→ 0,

as n→∞. This means that for all λ > 0, ωλ(x∗, F (x∗)) ≤ 0, a contradiction.
Hence x∗ ∈ F (x∗). �

Next, we prove the following theorem.

Theorem 3.2. Let M be a nonempty ω-complete subset of a complete modular
metric space (Xω, ω). Let F : M → C(M) be a multi-valued mapping such that
there exists κ : (0,∞) → [0, 1) with lim sups→t+ κ(s) < 1, for any t ∈ [0,∞),
for any distinct x, y ∈M,λ > 0 and for some m ∈ N, a ∈ Fm(x), there exists
b(6= a) ∈ Fm(y) such that

ωλ(a, b) ≤ κ(ωλ(x, y))ωλ(x, y). (3.8)

Then F has a fixed point x∗ ∈M for some positive integer m ≥ 1.

Proof. By Theorem 3.1, there exists exactly one x∗ ∈ M such that x∗ ∈
Fm(x∗) for some integer m ≥ 1. This implies that Fm(F (x∗)) = Fm+1(x∗) =
F (x∗). Since x∗ ∈ Fm(x∗) for some integer m ≥ 1, therefore x∗ ∈ F (x∗). �

Remark 3.3. The proofs of Theorem 3.1 is a new and alternative proof of
Theorem 4.3 of Abdou [1]. Observe that the restriction that ω satisfies the
∆2-type condition imposed on the results of [1] was removed. Furthermore,
Lemma 2.6 of [1] which was crucial in the proofs of the results of [1] is not
needed in the proofs of our results.
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