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Abstract: Beef quality is characterized by marbling (marbling degree and marbling fineness), 
physiochemical (shear force, meat color, fat color, texture, and maturity), and sensory 
(tenderness, flavor, juiciness, taste, odor, and appearance) traits. This paper summarizes 
and addresses beef-quality characteristics and the beef-grading systems in Korea, Japan, 
the USA, and Australia. This paper summarizes recent research progresses on the genetic 
and nutritional factors that affect beef quality. Intramuscular (i.m.) adipose tissue deposition 
or marbling is a major determinant of beef quality. This paper addresses the mechanisms 
of i.m. adipose tissue deposition focused on adipogenesis and lipogenesis. We also address 
selected signaling pathways associated with i.m. adipose tissue deposition. Nutrients contribute 
to the cellular response and phenotypes through gene expression and metabolism. This paper 
addresses control of gene expression through several nutrients (carbohydrates, fat/fatty acids, 
vitamins, etc.) for i.m. adipose tissue deposition. Several transcription factors responsible 
for gene expression via nutrients are addressed. We introduce the concept of genome-based 
precision feeding in Korean cattle.

Keywords: Beef Cattle; Beef Quality; Genome-based Precision Feeding; Intramuscular 
Adipose Tissue Deposition; Marbling; Nutrigenomics

INTRODUCTION 

Beef-quality and quantity characteristics are important, as they determine the price of beef 
and consumer preference. Beef quality is categorized by marbling, physiochemical, and 
sensory traits. Several factors affect beef quality aspects. These include genetic, management, 
and nutritional factors [1,2]. Carcass classification and grading systems are needed to stan-
dardize carcass characteristics and facilitate trading [3]. Several countries including Korea, 
Japan, USA, and Australia have established beef classification and grading systems [3]. 
 Intramuscular (i.m.) adipose tissue deposition or marbling in the longissimus dorsi 
muscle (LM) is the most important trait affecting beef quality and palatability, as well as 
beef price, particularly in Korean cattle (Hanwoo) and Japanese Black cattle [3]. To enhance 
beef quality, understanding the molecular mechanisms of i.m. adipose tissue deposition is 
important. Functional genomics tools, including transcriptomics, proteomics, and nutri-
genomics, have been used to elucidate the molecular mechanisms of i.m. adipose tissue 
deposition in beef cattle [2,4]. In addition, nutrigenomics is the combined study of genomics 
and nutrition [4]. Nutrigenomics may apply for maximizing the expression of the genetic 
potential of beef cattle.
 In this paper, we review beef-quality characteristics, global beef-grading systems, factors 
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that affect beef quality, and the molecular mechanisms re-
sponsible for bovine i.m. adipose tissue deposition. We also 
address the nutrigenomics aspects of i.m. adipose tissue de-
position in cattle.

FACTORS AFFECTING BEEF QUALITY

Beef quality and yield characteristics 
Beef-quality characteristics are categorized into nutritional, 
physiochemical, and sensory traits (Table 1). Beef-quantity 
characteristics include carcass weight, eye-muscle area, and 
backfat thickness. 
 Beef consists of water (70% to 76%), protein (15% to 23%), 
muscle/fat (0.7% to 38%), carbohydrates (0.5% to 2%), min-
erals (0.5% to 2%), vitamins, etc. [1,2]. The nutritional traits 
of beef include protein, fat, fatty acids, vitamins (e.g., B3, B6, 
and B12), iron, zinc, and selenium. Beef is an important source 
of amino acids in the human diet and provides a balanced 
amino-acid profile [5]. Beef is also a good source of amino 
acids with antioxidant properties and peptides for human 
health [5]. Beef contains extremely variable amounts of fat, 
ranging from 1.9% to 37.8%, depending on the breed (Brahman 
or Wagyu) and other factors [2]. 
 The major categories of fatty acids in beef LM are saturated 
fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) 
[6]. The major SFAs in the LM of Korean cattle steers are 
palmitic acid (C16:0; 25.8% to 27.4% of fresh loin fat) and 
stearic acid (C18:0; 9.7% to 10.4% of fresh loin fat) [6]. The 
most abundant MUFA in beef LM is oleic acid (C18:1; 43.1% 
to 46.6% of fresh loin fat in Korean cattle steers). The major 
polyunsaturated fatty acids (PUFAs) in the LM of Korean 
cattle steers are linoleic acid (C18:2n6; 0.49% to 0.61% of fresh 
loin fat), gamma-linolenic acid (C18:3n6; 0.02% to 0.06%), 
eicosatrienoic acid (C20:3n6; 0.06% to 0.08%), and eicosa-
pentaenoic acid (EPA: C20:5; 0.14% to 0.17%) [6]. PUFAs 
are classified into omega-3 (n-3) fatty acids (double bond 
between the third and fourth carbons from the end methyl 
group) and omega-6 (n-6) fatty acids (double bond between 

the sixth and seventh carbons from the end methyl group 
[7]. The major omega-3 PUFA is alpha-linolenic acid, which 
is metabolized to EPA, docosapentaenoic acid (DPA, C22:5), 
and docosahexaenoic acid (DHA, C22:6). The omega-3 
PUFAs may reduce the incidence of cardiovascular disease 
[8]. Linoleic acid is an abundant omega-6 that is metabolized 
to arachidonic acid (20:4n6) [8]. Pasture or organically 
raised beef contains higher percentages of total omega-3 
fatty acids and PUFAs, which may be beneficial to human 
health [9].
 Beef-quality grade (QG) affects the chemical composition 
of the LM. In the LM of Korean cattle, the protein percentage 
decreases with increasing QG, whereas the fat percentage 
increases [10]. With increasing QG, the percentages of loin 
MUFAs, including oleic acid, increase, whereas the percent-
ages of PUFAs decrease [6,11]. Meanwhile, the SFA and 
MUFA composition of adipose tissue was regulated by adipose 
tissue fatty acid desaturation, with little contribution from 
hepatic or duodenal fatty acids [12]. Beef-cattle farmers are 
profoundly interested in carcass price, as it determines their 
income. In South Korea, the beef-carcass auction price is rou-
tinely determined by the wholesaler after beef grading in the 
slaughterhouse. In Korean cattle steers, the auction price is 
very strongly positively correlated with the marbling score 
(MS) ([R2 (regression coefficient of determination) = 0.75; 
p<0.001] and QG [R2 = 0.79; p<0.001]), confirming that MS 
or QG is a major determinant of beef price [13].
 Marbling is characterized by the presence of white parti-
cles or flecks of i.m. adipose tissue between the LM muscle 
bundles [14]. The size (fine or coarse) and spatial distribution 
of the marbling particles (MPs) are important marbling traits, 
in addition to the degree of marbling [15,16]. Consumers 
desire finely marbled beef, which improves the sale of Ko-
rean cattle [16,17]. Finely marbled beef is also favored by 
Japanese consumers and carries a higher price than coarsely 
marbled-beef [18]. Computer image analysis has been applied 
to measure the size characteristics (fineness or coarseness) 
of the MPs as well as the degree of marbling in the muscle 

Table 1. Summary of beef quality and yield characteristics1) 

Criteria Items or Indicators

Beef quality characteristics  
Marbling Marbling score, marbling size (fine, coarse)
Physiochemical traits pH, cooking loss, shear force, meat color, fat color, texture, maturity
Sensory traits Tenderness, flavor, juiciness, taste, odor, appearance, overall acceptance

Beef quantity characteristics  
Yield traits Carcass weight, eye muscle area, backfat thickness

Other considerations  
Economic efficiency Income
Social consideration Rural development 
Environmental consideration Carbon footprint, animal welfare
Safety issue Antibiotic

1) Modified from Hocquette et al [14].
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(Figure 1) [15]. We recently evaluated the size characteristics 
of beef MP using computer image analysis in Korean cattle. 
The results showed that the size (fine or coarse) of the MPs 
was strongly positively correlated with auction price [13]. 
These marbling-trait characteristics were strongly associat-
ed with the auction price in highly marbled beef (QGs 1+ 
and 1++) but not in moderately marbled beef (QG 1). This 
study demonstrates that computer image analysis is a valu-
able tool for assessing the size characteristics of marbling 
traits and that it can be used to determine finely and highly 
marbled beef. We compared the transcriptomes of high- 
and low-marbling-fineness groups of longissimus thoracis 
(LT) muscle from Korean cattle. We identified 328 differ-
entially expressed genes, analysis of which revealed that 
pathways regulating adipocyte hyperplasia and hypertrophy 
are involved in the marbling fineness of the LT [19].
 The color of meat is evaluated firstly by consumers; thus, 
it is an important parameter influencing the purchasing de-
cision [20]. At the point of sale, consumers generally cannot 
evaluate meat quality without opening the package. Thus, a 
bright cherry-red color is normally used as an indicator of 
the wholesomeness of fresh meat [21]. Any deviation from 
the bright cherry-red color of fresh meat can result in less 
consumer acceptance [22]. Myoglobin is the sarcoplasmic 
heme protein that is primarily responsible for meat color, 
but hemoglobin and cytochromes also contribute to a lesser 
extent [22]. Meat color is routinely measured using the Com-
mission Internationale de l’Eclairage L*a*b* system [23], in 
which L*, a*, and b* represent the lightness, redness, and 
yellowness of the meat, respectively. Beef color is affected by 
several factors, including genetics, animal age, nutritional 
status, the slaughter process, and meat aging [1]. Fresh beef 
normally has a bright red color, which darkens with age, 
changing from bright red to dark red [24]. Diet can affect 
beef or carcass color. For example, the subcutaneous adipose 
tissue of steers fed grass is more yellow than that of animals 
fed concentrates [25]. This difference may be due to there 
being a greater amount of beta-carotene in pasture than in 

concentrates. Muscle from grain-finished Brahman steers 
is less dark and is redder in color than that from pastured 
steers [26]. Dietary vitamin E supplementation has been 
used to enhance the lipid and color stability of beef, and the 
antioxidant function of alpha-tocopherol may, in part, be 
responsible for this beneficial effect [27].
 Beef eating quality is measured by sensory testing, and 
the sensory evaluation is performed by either trained panelists 
or untrained consumers. Sensory traits include tenderness, 
flavor, juiciness, taste, odor, appearance, and overall accep-
tance. Sensory traits are important determinants of the 
acceptability and palatability of beef, and a lexicon describ-
ing the flavor characteristics of beef was developed [28]. 
Tenderness is regarded as the most important consumer-
satisfaction factor, followed by flavor and juiciness [29]. Meat 
tenderness depends on several factors, including background 
toughness related to connective tissue, the degree of muscle 
contraction, muscle myofibril degradation by proteolysis 
during aging, i.m. adipose tissue content, and protein de-
naturation during cooking [30-32]. The Warner-Bratzler 
shear force is an instrumentally measured value of tenderness. 
Meat flavor is a complex sensation that involves a combi-
nation of olfactory, gustatory, and trigeminal sensations 
that detect basic taste and aroma [33]. Meat juiciness is char-
acterized by the perceived amount of juice and the level of 
lubrication during mastication of the meat in the mouth [30].
 Beef yield is determined by several criteria, depending 
on the country [30]. In Korea and Japan, yield grade (YG) 
is characterized by the edible percentage of the meat, and 
is determined by the combination of carcass weight, eye-
muscle area, and backfat thickness (or subcutaneous adipose 
tissue thickness) [3]. The basis of yield grading in the United 
States Department of Agriculture (USDA) system is an in-
dication of the yield of boneless, trimmed retail cuts [3].

Global beef-grading systems
Beef-grading systems are well established in several coun-
tries, including Korea, Japan, the USA, Australia, and the EU 

Figure 1. Computer imaging analysis procedure for the beef-marbling particles (MPs). Ribeye photograph was taken with an HK-333 camera, and 
the image was converted by binarization and thinning using Beef Analyzer II software (Kuchida et al [98]; Beak et al [13]). The MPs were catego-
rized into fine MPs (0.01 to 0.5 cm2) and coarse MPs (>0.5 cm2).
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(Table 2) [3]. QG and YG are determined by carcass-based 
grading systems in Korea, Japan, and the USA. Meat Standards 
Australia (MSA) grading standards are based on cuts [3]. 
 In Korea, beef is evaluated using two grading categories 
(QG and YG) based on the Korean Beef Carcass Grading 
System developed by the Korea Institute for Animal Products 
Quality Evaluation (KAPE) (Table 2) [34]. There are five levels 
of QGs: 1++ (best), 1+, 1, 2, and 3 (worst) [34]. The major 
QG item is MS or i.m. adipose tissue content, and other fac-
tors (meat color, fat color, and maturity) also affect the QG. 
The MS is scored on a nine-point scale, from 1 (devoid) to 9 
(abundant). The best QG1++ includes MS 7, 8, or 9, whereas 
the worst QG3 has MS 1. Further, meat color, fat color, tex-
ture, and maturity also affect on QG. The three YG levels 
are A (highest), B, and C (lowest). The YG is determined 
by a combination of rib-eye area, backfat thickness, and 
carcass weight. In the YG system, six different yield-index 
equations were based on combination of three sex categories 
(cow, bull, and steer) and two breeds (Korean cattle and 
Holstein). Quality grades significantly affect carcass char-
acteristics and fatty acids in Korean cattle steer loin [6,10]. 
For example, the i.m. fat% increases but protein% decreases 
as QG increases in the loin of Korean cattle steers. With in-
creasing QG, oleic acid content (g/kg fresh meat) increases 
but the PUFA/SFA ratio decreases.
 Japan uses the Japanese Meat Grading Association (JMGA) 
grading system, in which quality is graded based on marbling, 

meat color, meat brightness, meat texture, fat firmness, fat 
texture, fat color, fat luster, and fat quality [18]. In the JMGA 
system, beef QG is assessed after quartering between the 
fifth and sixth ribs, and there are 5 QG levels (5 [highest] to 
1 [lowest]) [35]. There are 12 marbling levels (1 to 12; larger 
more abundant) and 3 YG levels (A [best], B, C [worst]) in 
the JMGA system, in which YGs are determined by a regres-
sion equation using the combined inputs of carcass weight, 
eye-muscle area, rib thickness, and fat thickness [35].
 The USA uses the USDA grading system, in which eight 
beef QGs are currently applicable to steer and heifer carcasses: 
Prime, Choice, Select, Standard, Commercial, Utility, Cutter 
and Canner [3,36]. The USDA grading system has five YGs 
(1 to 5). Quality is graded based on marbling, ossification 
score, meat color, and meat texture. The USDA grading sys-
tem has nine marbling levels from 1 (devoid) to 9 (abundant) 
[3]. Higher grading levels are characterized by higher mar-
bling levels at lower maturity. For example, Prime carcasses 
need a minimum of slightly abundant marbling for A matu-
rity, whereas Choice carcasses can have a minimum of small 
marbling for A maturity but need a minimum of modest 
marbling for B maturity [36]. The USDA YGs have five levels 
(1 to 5), and these are based on a regression equation with 
the combined inputs of the external fat amount; the amounts 
of kidney, pelvic, and heart fat; the quartered LM area; and 
the hot carcass weight [36].
 The MSA system has unique features: it is a cut-based 

Table 2. Summary of global beef grading systems of several countries1)

Country
 (Grading scheme: 
   unit)

Quality grade Yield grade

Grades Basis of grading Marbling level Grades Basis of grading

South Korea 
 (Korea: carcass)

Location: 13th rib 
interface 
5: 1++, 1+, 1, 2, 3

Marbling, meat color, fat color, 
texture, maturity (ossification 
score)

9: 1-9 (larger more abundant) 3: A, B, C Carcass weight, eye muscle 
area, backfat thickness

Japan 
 (JMGA: carcass)

Location: 6th-7th rib 
section 
5: 5, 4, 3, 2, 1

Marbling, meat color, meat 
brightness, meat texture, fat 
firmness, fat texture, fat color, 
fat luster, fat quality

12: 1-12 3: A, B, C Carcass weight, eye muscle 
area, rib thickness, fat thick-
ness

USA 
 (USDA: carcass)

8: Prime, Choice, 
Select, Standard, 
Commercial, Utility, 
Cutter, Canner

Marbling, ossification score, 
meat color, meat texture

9: Abundant, moderately 
abundant, slightly abundant, 
moderate, modest, small, 
slight, traces, practically 
devoid

5: 1, 2, 3, 4, 5 Carcass weight, eye muscle 
area, rib fat, kidney and 
perirenal fat

Australia2) 
 (MSA: cut)

3: good everyday 
(3 star), better than 
everyday (4 star), or 
premium quality (5 
star)

Bos indicus %, sex, HGP 
implants, milk fed vealer, sale 
yard, ccarcass weight, hump 
height, hang technique, electric 
stimulation, USAD marbling, rib 
fat depth, ossification score, 
meat color, ultimate pH, days 
aged, cut types, cooking method

USDA marbling score - -

1) Sex is considered for all grading systems. 
2) MSA grading standards are defined by consumer score outcomes and eating-quality program, and not separated for quality and quantity grades. 
JMGA, Japanese Meat Grading Association; MSA, Meat Standards Australia; USDA, United States Department of Agriculture; HGP, hormone growth pro-
motants implant.
Source: Polkinghorne & Thompson [3]; Motoyama et al [18]; Bonny et al [37]; Jo et al [66]; Farmer & Farrell [96]; Joo et al [97].
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grading system defined by consumer-score outcomes and 
an eating-quality program, and is not separated by QG and 
YG [37]. The MSA has three grading levels of good for every 
day (three stars), better than for every day (four stars), and 
premium quality (five stars). Grading is based on several items, 
including USDA marbling, carcass weight, rib-fat depth, ossifi-
cation score, meat color, bos indicus %, sex, hormonal-growth-
promoter implants, milk-fed vealer, sale yard, hump height, 
hang technique, electrical stimulation, ultimate pH, days 
aged, cut type, and cooking method [37].

Factors affecting beef quality 
Several factor such as genetic, management, and nutritional 
factors affect the meat quality of cattle and buffalo (Table 3) 
[1,2,38,39]. The genetic factors include breed and sex. A com-
parison of i.m. fat contents among several breeds found that 
Japanese Wagyu beef had the highest i.m. fat content (36.05%), 
and Korean cattle (known as Hanwoo) beef had the second 
highest (14.1%), whereas Brahman beef had the lowest i.m. 
fat content (2.8%) in the LM [2]. Wagyu beef having the 
highest i.m. fat content among four cattle breeds (Wagyu, 
Angus, Brahman, and the Malaysian local breed Kedah-
Kelantan) was confirmed in another study [40]. Beef price 
is largely dependent on the degree of marbling. For exam-
ple, in 2022, Japanese Wagyu beef was the most expensive 
(18.30 USD/kg) in the world, and Hanwoo beef was the 
second-highest priced (16.50 USD), followed by American 
beef (9.30 US dollars), and Australian beef (7.20 USD) (Ja-
pan, [41]; Korea, [34]; USA, [42]; Australia, [43]). The beef 
price of Korean cattle varies widely depending on the QG. 
For example, the 2021 wholesale market beef price of QG 
1++ beef was 19.50 USD/kg, whereas the price of QG 3 beef 
was 10.10 USD/kg, or almost half the price of QG 1++.
 We compared several beef-quality traits among Korean 
cattle, Angus, and Holstein steers. The Korean cattle LT had 
the highest fat content; the highest percentage of MUFAs, 
including oleic acid; the lowest shear force; and the best sen-
sory traits (flavor, tenderness, juiciness, and overall acceptance) 

among the three cattle breeds [44]. The i.m. adipose tissue 
content positively affects the sensory quality [10,45]. In ad-
dition to the i.m. adipose tissue content, the composition and 
content of fatty acids are important factors in beef palatability 
[46]. Oleic acid may be positively associated with beef flavor, 
whereas PUFAs may be negatively associated with beef flavor 
[47]. Thus, the relatively high i.m. fat and oleic-acid contents 
observed in our study may positively affect the sensory traits 
of Korean cattle beef [44]. Grain-fed beef had higher per-
centages of oleic acid than grass-fed beef [48].
 Management factors, such as castration and the environ-
ment (e.g., temperature and season) affect beef quality and 
quantity. Castration profoundly affects beef quality, as it im-
proves QG [49]. The majority of beef from uncastrated bulls 
is QG 3 (lowest QG), whereas over 80% of castrated steer 
beef from Korean cattle is equal to or above QG 1. Marbling 
scores are markedly higher in Korean cattle steers (MS = 1.1) 
than in bulls (MS = 5.0). Heifers and steers have higher carcass-
fat contents compared to bulls in crossbred Holstein-Friesian 
×Limousin cattle [50]. The castration method (half-castration 
or complete castration) affects beef quality and quantity. Half 
castration produces higher meat yields compared to com-
plete castration (steers); it also produces meat with a higher 
IMF content and a lower shear force (higher tenderness) than 
that of uncastrated Korean cattle bulls [51].
 Environmental factors, such as temperature and the season, 
can affect beef-quality characteristics. Piao and Baik [52] 
evaluated whether climatic conditions affected the beef-car-
cass characteristics of Korean cattle steers. Among the four 
seasons, backfat thickness was greatest in winter (December, 
January, February) and the grade-A yield percentage was 
lowest, whereas the YG C percentage was highest, indicating 
that YG is worse in winter. This is likely due to backfat thick-
ness being highest in winter. Strategies that minimize the 
adverse effects of cold stress on YG are needed. We have in-
vestigated the effects of temperature on the growth of Korean 
cattle steers [53]. Mild or moderate cold stress did not affect 
the growth performance of Korean cattle steers at the early 

Table 3. Summary of factors affecting beef quality 

Factors Major beef quality items

Genetic factors  
Breed Marbling, sensory, yield, income
Sex Marbling, sensory, musculature, income

Management factors  
Castration Marbling, sensory, yield, income
Slaughter age/weight Marbling, sensory, yield, income
Environments Marbling, yield 

Nutritional factors/feeding system
Plane of nutrition Marbling, sensory, yield, income
Roughage-concentrate ratio Marbling, fatty acid composition, sensory, income
Feeding systems Marbling, sensory, income

Source: Sakowski et al [1]; Park et al [2].
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fattening stage. Cold temperatures increased concentrate 
and forage intakes/kg of body weight in our study. Feed in-
take also increases in cattle during the colder months [54]. 
Cold stress reduces growth performance and feed efficiency 
due to the increased energy required to maintain body tem-
perature [55]. Increased feed intake may have contributed to 
maintaining body temperature during the cold conditions 
and provided the additional nutrients needed by the animals 
during the cold period, resulting in no changes in weight gain 
or feed efficiency in our study. A long photoperiod improves 
fat deposition by regulating the expression of lipid-metabo-
lism-related genes in Jinjiang cattle during winter [56].
 Nutritional factors affect beef quality. Lipogenesis con-
tributes to i.m. adipose tissue content, affecting beef quality. 
Lipogenesis (de novo fatty acid synthesis) in ruminants gen-
erally occurs in adipose tissue via conversion of acetate and 
glucose to fatty acids [57,58]. Acetate is abundantly produced 
during ruminal fermentation and is used as a substrate for 
lipogenesis. In ruminants, glucose can be derived from either 
gluconeogenesis from propionate/lactate or from glucose 
absorbed by the small intestine [58]. ATP citrate lyase is in-
volved in cleaving citrate to oxaloacetate and acetyl-CoA 
and is a key enzyme that is responsible for utilizing glucose 
during lipogenesis. The activity of ATP citrate lyase is low in 
ruminants, so glucose is less often used as a lipogenic sub-
strate in ruminants than in monogastric animals [59]. It has 
been suggested that glucose is preferred to acetate as a sub-
strate of lipogenesis for i.m. adipose tissue deposition [57], 
and sufficient activities of ATP citrate lyase were detected in 
bovine adipose tissue [60]. However, in a study of Angus × 
Simmental steers, acetate was more effective than glucose as 
the substrate for lipogenesis in intramuscular, subcutaneous, 
and visceral adipose tissue depots [61]. Beet pulp, a byproduct 
of sugar-beet processing that contains up to 40% neutral de-
tergent fiber and approximately 23% pectin, produces more 
acetate and less propionate than corn grain [62,63]. We in-
vestigated the effects on lipogenic parameters of partially 
substituting beet pulp for corn grain in Korean cattle steers 
[64] and found that such substitution increased the proportion 
of ruminal acetate and circulating insulin levels, indicating 
that feeding beet pulp increased the lipogenic parameters. 
Triglycerol synthesis requires a glycerol backbone, which is 
primarily supplied by glucose [65]. Providing propionate for 
glucose synthesis via gluconeogenesis may also contribute to 
triglycerol synthesis. Therefore, large proportions of concen-
trates or grain are routinely included in the diet when fattening 
beef cattle [66–69]. Supplementing the finishing diet with 
100 ppm γ-aminobutyric acid was found to improve antioxi-
dant enzyme status in the longissimus lumborum of Korean 
cattle steers [70]. 

MECHANISMS OF INTRAMUSCULAR 
ADIPOSE TISSUE DEPOSITION

The ratio of muscle to adipocytes in the LM determines the 
amount of i.m. adipose tissue deposition. Thus, understanding 
the mechanisms responsible for initial muscle- and adipocyte 
growth during the developmental stage of cattle is important. 
Adipogenesis includes the commitment of mesenchymal 
stem cells to preadipocytes, determination and proliferation 
of preadipocytes, and differentiation of preadipocytes into 
mature adipocytes [71]. Both hyperplasia (increased cell 
numbers) and hypertrophy (increased cell size) are associat-
ed with i.m. adipose tissue deposition [72]. May et al [73] 
provided direct evidence for intramuscular adipose hyper-
plasia in Angus and Wagyu steers. Hyperplasia of adipocytes 
occurs from 12 to 16 months of age in Angus steers [74], or 
from 13 to 18 months of age in beef cattle [75]. It has also re-
ported that adipocyte hyperplasia continued throughout the 
life of beef cattle [76]. The visible marbling is formed by the 
combined processes of hyperplasia and hypertrophy [75,76]. 
Strategies to increase hyperplasia and hypertrophy of adipo-
cytes may help to improve i.m. adipose tissue deposition [2]. 
Harper and Pethick [77] suggested that selecting cattle with 
high genetic potential to produce more preadipocytes within 
muscle is important for increasing i.m. adipose tissue depo-
sition. 
 Our laboratory focused on understanding the molecular 
mechanisms of i.m. adipose tissue deposition. We mainly 
used the castration model, as castration significantly increased 
i.m. adipose tissue deposition in Korean cattle [2,49]. Quan-
titative real-time polymerase chain reaction analysis revealed 
that steers had higher LM mRNA levels of genes involved in 
lipid uptake (lipoprotein lipase, CD36) and lipogenesis [acetyl-
CoA carboxylase (ACC), fatty acid synthase] compared with 
bulls [49], whereas steers had lower LM mRNA levels of genes 
involved in lipolysis (adipose triglyceride lipase, mono-
glyceride lipase), although hormone-sensitive lipase was 
higher in steers than in bulls [49]. Furthermore, we found 
that LM expression levels of some fatty-acid-uptake, lipo-
genesis, and fatty-acid-esterification genes were positively 
correlated with i.m. fat content, whereas the LM expression 
levels of some lipolysis genes were negatively correlated with 
i.m. fat content [78]. 
 We also used microarray analysis to examine transcrip-
tomic changes in the LM following castration of Korean 
cattle bulls. Castration upregulated the transcriptomes in-
volved in lipid metabolism, including adipogenesis, fatty-acid-
synthesis/-esterification and fatty-acid-oxidation, tricarboxylic-
acid-cycle, and oxidative-phosphorylation genes [79]. We 
also applied RNA-sequencing analysis to examine tran-
scriptomic changes in Korean cattle bulls following castration 
and found that the transcriptomes involved in known path-
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ways such as peroxisome proliferator-activated receptor 
signaling and retinol metabolism changed in the LM [80]. 
We also found that the transcriptomes of novel pathways 
such as the complement and coagulation cascades are changed. 
Our study demonstrated that the complement and coagu-
lation cascade pathways may be involved in IMF deposition.
 We compared the expression of genes involved in extra-
cellular matrix (ECM) and integrin genes in the LT between 
Korean cattle bulls and steers. Steers had lower collagen type 
1 α1 and collagen type 3 α1 mRNA levels than bulls, but 
they had higher matrix metalloproteinase 9 (MMP9) mRNA 
levels [81]. Steers had higher integrin α5 mRNA levels, but 
lower integrin β6 mRNA and protein levels. Regression 
analysis showed that MMP9 mRNA levels were positively 
correlated with IMF content. Our findings implied that 
some ECM-related factors may be involved in IMF deposi-
tion. In another study, myosin heavy chain isoforms partially 
accounted for the variations in meat quality between dif-
ferent Thai native cattle breeds [82]. Overall, these findings 
imply that the combined effects of increased lipogenesis, 
increased fatty-acid uptake, increased fatty-acid esterifica-
tion, decreased lipolysis, and changes in ECM-related gene 
expression contribute to increasing IMF deposition. There-
fore, designing methods (nutritional, managerial, or genetic) 
that increase fat deposition but decrease fat removal may 
be effective for enhancing IMF deposition in the LM.
 We have also examined whether castration affects adi-
pose cellularity and lipid-metabolism gene expression in 
various fat depots. Castration increased body-fat cell sizes 
in various fat depots, including subcutaneous, abdominal, 
and perirenal fat. Upregulation of adipogenesis (CCAAT/
enhancer binding protein alpha, ACC) and down-regula-
tion of fatty-acid β-oxidation (medium-chain acyl-CoA 
dehydrogenase) genes may partially contribute to increased 
adiposity [83]. We also compared hepatic expression levels 
of lipid-metabolism genes between Korean cattle bulls and 

steers. Steers had higher hepatic ACC and sterol regulatory 
element binding protein 1 mRNA levels than bulls [84]. How-
ever, castration did not significantly affect the hepatic gene 
expression involved in TG synthesis, fatty-acid oxidation, and 
very-low-density lipoprotein secretion. Overall, our studies 
demonstrate that lipid metabolism in the LM is important 
for the regulation of IMF deposition, whereas hepatic lipid 
metabolism has minor effects on IMF deposition.
 We examined the gene expression involved in several sig-
naling pathways following castration of Korean cattle bulls. 
We found decreases in Wingless and Int (Wnt)/beta-catenin 
signaling pathway genes (wingless-type MMTV integration 
site family, member 10b; cadherin-associated protein, beta 
1), but increases in Wnt antagonist (secreted frizzled-related 
proteins 4) and adipogenic (peroxisome proliferator-activated 
receptor gamma) gene expression following castration [85]. 
Our findings imply that downregulation of the Wnt/beta-
catenin signaling pathway following castration may upregulate 
adipogenic gene expression, thereby contributing to i.m. adi-
pose tissue deposition in the LM. We also evaluated whether 
castration affected bone morphogenetic protein 2 (BMP2) 
levels and the expression of its signaling molecules in Korean 
cattle, and detected higher plasma BMP2 and leptin levels in 
steers than in bulls [86]. In the same study, steers had higher 
mRNA levels of the lysyl oxidase gene, a downstream target 
of the BMP signaling pathway, adipogenic peroxisome pro-
liferator-activated receptor gamma, and lipogenic fatty acid 
binding protein 4 genes in the LT, compared to bulls. The 
study demonstrated that upregulation of the BMP signaling 
pathway in response to castration may increase adipogenic 
gene expression, contributing to i.m. adipose tissue deposi-
tion in castrated animals. Overall, our findings demonstrate 
that the expression of genes involved in signaling pathways 
for hyperplasia (Wnt/beta-catenin, BMP2 signaling) and hyper-
trophy (leptin/signal transducer and activator of transcription 
3 signaling) changed in the LM following castration (Figure 2).

Figure 2. Changes in the hyperplasia and hypertrophy signaling pathways in the longissimus dorsi muscle of Korean cattle bulls after castration 
(Jeong et al [85]; Jung and Baik [86]). Wnt, Wingless and Int; BMP2, bone morphogenetic protein 2; STAT3, signal transducer and activator of tran-
scription 3.
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NUTRIGENOMICS OF INTRAMUSCULAR 
ADIPOSE TISSUE DEPOSITION 

Nutrients can directly or indirectly regulate gene expression 
at several steps, including transcription, translation, and post-
translational modifications, thereby affecting several cellular 
responses (e.g., cell cycle, inflammation, and metabolism) 
and phenotypes of animals (Figure 3) [87]. Nutrients may 
control gene expression via transcription factors, affecting 
nutrient metabolism (Figure 4) [88]. For example, carbohy-
drates may regulate gene expression via the transcription 
factor carbohydrate-responsive element binding protein, af-
fecting metabolic pathways, such as lipogenesis. Lipids or fatty 

acids may control gene expression via the transcription factor 
peroxisome proliferator-activated receptor, affecting lipid 
metabolism. Amino acids may control gene expression via 
the general control nonderepressible 2/activating transcrip-
tion factor 4 and mechanistic target of rapamycin c1 pathways, 
affecting protein synthesis. Vitamin A may regulate gene ex-
pression via the transcription factors retinoic acid receptor/
retinoic X receptor heterodimer, affecting adipogenesis. 
 Functional genomic tools including transcriptomics, pro-
teomics, and metagenomics, and fusion technologies such as 
nutrigenomics have been applied in animal studies. Nutrige-
nomics and nutrigenetics represent the interaction between 
nutrients and genes/genome (Figure 5) [89]. The genome af-

Figure 3. Contribution of nutrients to the cellular response and phenotypes by regulating several gene expression steps (modified from Costa et 
al [87]). SNP, single nucleotide polymorphism.

Figure 4. Summary of the control of gene expression through nutrients via transcription factors and their metabolic responses (modified from 
Haro et al [88]). ATF4, activating transcription factor 4; ChREBP, carbohydrate-responsive element binding protein; GCN2, general control non-dere-
pressible 2; mTORC1, mechanistic target of rapamycin complex 1; PPARs, peroxisome proliferator-activated receptors; RAR, retinoic acid receptor; 
RXR, retinoic X receptor.
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fects how the body responds to nutrients, and nutrients affect 
gene expression. This interaction can be applied to the design 
of personalized diets for humans and animals. Nutrigenomics 
is defined as the application of high-throughput genomic 
tools, such as transcriptomics, to nutrition research [90]. 
Nutrigenomic studies have been conducted on lipogenesis 
and beef quality. For example, pre- and post-natal nutrition-
al modulation and weaning age resulted in transcriptomic 
changes associated with lipogenesis and inflammation in 
beef cattle [91]. Metabolomic and transcriptome analyses 
revealed that finishing with a forage diet affected the meta-
bolic pathways related to tenderness and i.m. fat contents as 
compared to finishing with a grain diet in cattle [92]. Nutri-
genetics is defined as analysis of the effects of genetic variations 

on the interaction between nutrients and diseases or pheno-
types [93]. Nutrigenetic interactions between the alcohol 
dehydrogenase 1C (ADH1C) single nucleotide polymorphism 
(ADH1C c.-64T>C) and vitamin A levels have been studied. 
ADH is an enzyme that oxidizes retinol to retinaldehyde, and 
retinaldehyde inhibits adipocyte differentiation [94]. Cattle 
with the TT genotype had 22.9% greater i.m. fat contents com-
pared with those with the CC genotype without vitamin A 
supplementation [95]. 
 Previously, we have proposed nutrigenetic study concept 
of Korean cattle: “Genome-based precision feeding model” 
[4]. The study may be feasible because Korean cattle are geneti-
cally heterogenous, so that genetic selection is still possible. 
Selection of high- or low- beef quality genetic potential groups 
may be made, based on breeding values by DNA chip analysis 
(Figure 6). Genome based-precision feeding may be made 
by customized feed for high vs low genetic potential group. 
This approach may maximize expression of genetic potential 
of animal and may improve beef quality, leading to maximi-
zation of production efficiency. 

CONCLUSION

Several factors affect beef quality, including genetics, man-
agement, and nutrition. These factors should be considered 
to improve beef quality, including marbling and tenderness. 
Other factors, such as greenhouse gas emissions/carbon 
footprint, animal welfare, safety (antibiotics), and rural de-
velopment should also be considered in the future. Hyperplasia 
and hypertrophy of adipocytes may be involved in i.m. adi-
pose tissue deposition. The combined effects of lipogenesis, 
fatty-acid uptake, fatty-acid esterification, and lipolysis con-

Figure 5. Interaction between nutrients and genes or the genome 
(modified from Mutch et al [89]). The genome affects how the body 
responds to nutrients, and nutrients affect gene expression. This in-
teraction can be applied to design personalized diets for humans 
and animals.

Figure 6. Nutrigenetic study on beef quality: genome-based precision-feeding model of Korean cattle.
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tribute to i.m. adipose tissue deposition. The Wnt/beta-catenin, 
BMP2, and leptin/signal transducer and activator of tran-
scription 3 signaling pathways may regulate i.m. adipose 
tissue deposition. These results will be useful in the design of 
efficient methods to improve beef quality. Nutrients regulate 
gene expression via transcription factors, affecting metabo-
lism and the phenotype. Genome-based precision feeding 
may maximize the expression of the genetic potential of an 
animal and improve the production efficiency and beef quality 
of Korean cattle. The combined effects of the genome, the 
environment, the rumen microbiome, and the epigenome, 
and their interaction, determine the cattle phenotype. Thus, 
a systemic approach using multi-omics may provide an inte-
grated solution to improve economic traits, including beef 
quality as well as growth.
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