DOI QR코드

DOI QR Code

Physical and mechanical changes on titanium base of three different types of hybrid abutment after cyclic loading

  • Rimantas Oziunas (Department of Prosthodontics, Medical Academy, Lithuanian University of Health Sciences) ;
  • Jurgina Sakalauskiene (Department of Prosthodontics, Medical Academy, Lithuanian University of Health Sciences) ;
  • Laurynas Staisiunas (Center for Physical Sciences and Technology) ;
  • Gediminas Zekonis (Department of Prosthodontics, Medical Academy, Lithuanian University of Health Sciences) ;
  • Juozas Zilinskas (Department of Prosthodontics, Medical Academy, Lithuanian University of Health Sciences) ;
  • Gintaras Januzis (Department of Maxillofacial Surgery, Lithuanian University of Health Sciences)
  • Received : 2022.08.31
  • Accepted : 2022.12.01
  • Published : 2023.02.28

Abstract

PURPOSE. This study investigated the physical and mechanical changes in the titanium base of three different hybrid abutment materials after cyclic loading by estimating the post-load reverse torque value (RTV), compressive side fulcrum wear pattern of titanium base, and surface roughness. MATERIALS AND METHODS. A total of 24 dental implants were divided into three groups (n = 8 each): Group Z, LD, and P used zirconia, lithium disilicate, and polyetheretherketone, respectively, for hybrid abutment fabrication. RTV was evaluated after cyclic loading with 50 N for 1.2 × 106 chewing cycles. The compressive sides of the titanium bases were analyzed using a scanning electron microscope, and the roughness of the affected areas was measured using an optical profilometer after loading. Datasets were analyzed using Kruskal-Wallis test followed by Mann-Whitney tests with the Bonferroni correction (α = .05). RESULTS. Twenty-three samples passed the test; one LD sample fractured after 770,474 cycles. Post-load RTV varied significantly depending on the hybridabutment material (P = .020). Group P had a significantly higher median of post-load RTVs than group Z (16.5 and 14.3 Ncm, respectively). Groups LD and P showed minor signs of wear, and group Z showed a more pronounced wear pattern. While evaluating compressive side affected area roughness of titanium bases, lower medians were shown in group LD (Ra 0.16 and Rq 0.22 ㎛) and group P (Ra 0.16 and Rq 0.23 ㎛) than in group Z (Ra 0.26 and Rq 0.34 ㎛); significant differences were found only among the unaffected surface and group Z. CONCLUSION. The hybrid abutment material influences the post-load RTV. Group Z had a more pronounced wear pattern on the compressive side of titanium base; however, the surface roughness was not statistically different among the hybridabutment groups.

Keywords

References

  1. Mostafavi AS, Mojtahedi H, Javanmard A. Hybrid implant abutments: a literature review. European J Gen Dent 2021;10:106-15. https://doi.org/10.1055/s-0041-1735766
  2. Elsayed A, Wille S, Al-Akhali M, Kern M. Effect of fatigue loading on the fracture strength and failure mode of lithium disilicate and zirconia implant abutments. Clin Oral Implants Res 2018;29:20-7. https://doi.org/10.1111/clr.13034
  3. Taha D, Cesar PF, Sabet A. Influence of different combinations of CAD-CAM crown and customized abutment materials on the force absorption capacity in implant supported restorations - In vitro study. Dent Mater 2022;38:e10-8. https://doi.org/10.1016/j.dental.2021.12.025
  4. Tribst JPM, Piva AM de OD, Borges ALS, Bottino MA. Influence of crown and hybrid abutment ceramic materials on the stress distribution of implant-supported prosthesis. Rev Odontol UNESP 2018;47:149-54. https://doi.org/10.1590/1807-2577.04218
  5. Sammour SR, Maamoun El-Sheikh M, Aly El-Gendy A. Effect of implant abutment connection designs, and implant diameters on screw loosening before and after cyclic loading: In-vitro study. Dent Mater 2019;35: e265-71. https://doi.org/10.1016/j.dental.2019.07.026
  6. Kofron MD, Carstens M, Fu C, Wen HB. In vitro assessment of connection strength and stability of internal implant-abutment connections. Clin Biomech (Bristol, Avon) 2019;65:92-9. https://doi.org/10.1016/j.clinbiomech.2019.03.007
  7. Wiest W, Zabler S, Rack A, Fella C, Balles A, Nelson K, Schmelzeisen R, Hanke R. In situ microradioscopy and microtomography of fatigue-loaded dental two-piece implants. J Synchrotron Radiat 2015;22:1492-7. https://doi.org/10.1107/S1600577515015763
  8. Karl M, Taylor TD. Parameters determining micromotion at the implant-abutment interface. Int J Oral Maxillofac Implants 2014;29:1338-47. https://doi.org/10.11607/jomi.3762
  9. Yao KT, Kao HC, Cheng CK, Fang HW, Huang CH, Hsu ML. Mechanical performance of conical implant-abutment connections under different cyclic loading conditions. J Mech Behav Biomed Mater 2019;90:426-32. https://doi.org/10.1016/j.jmbbm.2018.10.039
  10. Blum K, Wiest W, Fella C, Balles A, Dittmann J, Rack A, Maier D, Thomann R, Spies BC, Kohal RJ, Zabler S, Nelson K. Fatigue induced changes in conical implant-abutment connections. Dent Mater 2015;31: 1415-26. https://doi.org/10.1016/j.dental.2015.09.004
  11. Klotz MW, Taylor TD, Goldberg AJ. Wear at the titanium-zirconia implant-abutment interface: a pilot study. Int J Oral Maxillofac Implants 2011;26:970-5.
  12. Gao J, Min J, Chen X, Yu P, Tan X, Zhang Q, Yu H. Effects of two fretting damage modes on the dental implant-abutment interface and the generation of metal wear debris: An in vitro study. Fatigue Fract Eng Mater Struct 2021;44:847-58. https://doi.org/10.1111/ffe.13399
  13. Winkler S, Ring K, Ring JD, Boberick KG. Implant screw mechanics and the settling effect: overview. J Oral Implantol 2003;29:242-5. https://doi.org/10.1563/1548-1336(2003)029<0242:ISMATS>2.3.CO;2
  14. Oziunas R, Sakalauskiene J, Jegelevicius D, Januzis G. A comparative biomechanical study of original and compatible titanium bases: evaluation of screw loosening and 3D-crown displacement following cyclic loading analysis. J Adv Prosthodont 2022;14:70-7. https://doi.org/10.4047/jap.2022.14.2.70
  15. Magne P, Silva M, Oderich E, Boff LL, Enciso R. Damping behavior of implant-supported restorations. Clin Oral Implants Res 2013;24:143-8. https://doi.org/10.1111/j.1600-0501.2011.02311.x
  16. Rosentritt M, Schneider-Feyrer S, Behr M, Preis V. In vitro shock absorption tests on implant-supported crowns: influence of crown materials and luting agents. Int J Oral Maxillofac Implants 2018;33:116-22. https://doi.org/10.11607/jomi.5463
  17. Conserva E, Menini M, Tealdo T, Bevilacqua M, Ravera G, Pera F, Pera P. The use of a masticatory robot to analyze the shock absorption capacity of different restorative materials for prosthetic implants: a preliminary report. Int J Prosthodont 2009;22:53-5.
  18. Al-Zordk W, Elmisery A, Ghazy M. Hybrid-abutment-restoration: effect of material type on torque maintenance and fracture resistance after thermal aging. Int J Implant Dent 2020;6:24. https://doi.org/10.1186/s40729-020-00220-y
  19. Ghodsi S, Tanous M, Hajimahmoudi M, Mahgoli H. Effect of aging on fracture resistance and torque loss of restorations supported by zirconia and polyetheretherketone abutments: An in vitro study. J Prosthet Dent 2021;125:501.e1-6. https://doi.org/10.1016/j.prosdent.2020.10.013
  20. Alonso-Perez R, Bartolome JF, Ferreiroa A, Salido MP, Pradies G. Original vs. non-original abutments for screw-retained single implant crowns: An in vitro evaluation of internal fit, mechanical behaviour and screw loosening. Clin Oral Implants Res 2018;29:1230-8. https://doi.org/10.1111/clr.13390
  21. Mehl C, Scheibner S, Ludwig K, Kern M. Wear of composite resin veneering materials and enamel in a chewing simulator. Dent Mater 2007;23:1382-9. https://doi.org/10.1016/j.dental.2006.11.026
  22. Kern M, Strub JR, Lu XY. Wear of composite resin veneering materials in a dual-axis chewing simulator. J Oral Rehabil 1999;26:372-8. https://doi.org/10.1046/j.1365-2842.1999.00416.x
  23. Almeida PJ, Silva CL, Alves JL, Silva FS, Martins RC, Sampaio-Fernandes J. Comparative analysis of the wear of titanium/titanium and titanium/zirconia interfaces in implant/abutment assemblies after thermocycling and mechanical loading. Rev Port Estomatol Med Dent Cir Maxilofac 2016;57:207-14. https://doi.org/10.1016/j.rpemd.2016.07.002
  24. Prado AM, Pereira J, Silva FS, Henriques B, Nascimento RM, Benfatti CAM, Lopez-Lopez J, Souza JCM. Wear of Morse taper and external hexagon implant joints after abutment removal. J Mater Sci Mater Med 2017;28:65. https://doi.org/10.1007/s10856-017-5879-6
  25. Apaza-Bedoya K, Tarce M, Benfatti CAM, Henriques B, Mathew MT, Teughels W, Souza JCM. Synergistic interactions between corrosion and wear at titanium-based dental implant connections: A scoping review. J Periodontal Res 2017;52:946-54. https://doi.org/10.1111/jre.12469
  26. de Aguiar Vilela Junior R, Aranha LC, Elias CN, Martinez EF. In vitro analysis of prosthetic abutment and angulable frictional implant interface adaptation: Mechanical and microbiological study. J Biomech 2021; 128:110733. https://doi.org/10.1016/j.jbiomech.2021.110733
  27. Nouh I, Kern M, Sabet AE, Aboelfadl AK, Hamdy AM, Chaar MS. Mechanical behavior of posterior all-ceramic hybrid-abutment-crowns versus hybrid-abutments with separate crowns-A laboratory study. Clin Oral Implants Res 2019;30:90-8. https://doi.org/10.1111/clr.13395
  28. Yazigi C, Kern M, Chaar MS, Libecki W, Elsayed A. The influence of the restorative material on the mechanical behavior of screw-retained hybrid-abutment-crowns. J Mech Behav Biomed Mater 2020;111: 103988. https://doi.org/10.1016/j.jmbbm.2020.103988
  29. Nascimento Cd, Pita MS, Santos Ede S, Monesi N, Pedrazzi V, de Albuquerque Junior RF, Ribeiro RF. Microbiome of titanium and zirconia dental implants abutments. Dent Mater 2016;32:93-101. https://doi.org/10.1016/j.dental.2015.10.014
  30. Cavusoglu Y, Akca K, Gurbuz R, Cehreli MC. A pilot study of joint stability at the zirconium or titanium abutment/titanium implant interface. Int J Oral Maxillofac Implants 2014;29:338-43. https://doi.org/10.11607/jomi.3116
  31. El Haddad E, Gianni AB, Mancini GE, Cura F, Carinci F. Implant-abutment leaking of replace conical connection nobel biocare® implant system. An in vitro study of the microbiological penetration from external environment to implant-abutment space. Oral Implantol (Rome) 2016;9:76-82.