DOI QR코드

DOI QR Code

Nonlinear vibration of FG-CNTRC curved pipes with temperature-dependent properties

  • Mingjie Liu (Quzhou College of Technology) ;
  • Shaoping Bi (Quzhou College of Technology) ;
  • Sicheng Shao (Quzhou College of Technology) ;
  • Hadi Babaei (Department of Mechanical Engineering, South Tehran Branch, Islamic Azad University)
  • Received : 2022.07.30
  • Accepted : 2023.02.01
  • Published : 2023.02.25

Abstract

In the current research, the nonlinear free vibrations of curved pipes made of functionally graded (FG) carbon nanotube reinforced composite (CNTRC) materials are investigated. It is assumed that the FG-CNTRC curved pipe is supported on a three-parameter nonlinear elastic foundation and is subjected to a uniform temperature rise. Properties of the curved nanocomposite pipe are distributed across the radius of the pipe and are given by means of a refined rule of mixtures approach. It is also assumed that all thermomechanical properties of the nanocomposite pipe are temperature-dependent. The governing equations of the curved pipe are obtained using a higher order shear deformation theory, where the traction free boundary conditions are satisfied on the top and bottom surfaces of the pipe. The von Kármán type of geometrical non-linearity is included into the formulation to consider the large deflection in the curved nanocomposite pipe. For the case of nanocomposite curved pipes which are simply supported in flexure and axially immovable, the motion equations are solved using the two-step perturbation technique. The closed-form expressions are provided to obtain the small- and large-amplitude frequencies of FG-CNTRC curved pipes rested on a nonlinear elastic foundation in thermal environment. Numerical results are given to explore the effects of CNT distribution pattern, the CNT volume fraction, thermal environment, nonlinear foundation stiffness, and geometrical parameters on the fundamental linear and nonlinear frequencies of the curved nanocomposite pipe.

Keywords

Acknowledgement

The paper received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

References

  1. Arefi, M. (2015), "Elastic solution of a curved beam made of functionally graded materials with different cross sections", Steel Compos. Struct., 18(3), 659-672. https://doi.org/10.12989/scs.2015.18.3.659.
  2. Allahkarami, F., Nikkhah-Bahrami, M. and Ghassabzadeh Saryazdi, M. (2018), "Nonlinear forced vibration of FG-CNTs-reinforced curved microbeam based on strain gradient theory considering out-of-plane motion", Steel Compos. Struct., 26(6), 673-691. https://doi.org/10.12989/scs.2018.26.6.673.
  3. Bahaadini, R., Saidi, A.R. and Hosseini, M. (2018), "Dynamic stability of fluid-conveying thin-walled rotating pipes reinforced with functionally graded carbon nanotubes", Acta Mechanica, 229, 5013-5029. https://doi.org/10.1007/s00707-018-2286-0.
  4. Babaei, H., Kiani, Y. and Eslami, M.R. (2018), "Geometrically nonlinear analysis of functionally graded shallow curved tubes in thermal environment", Thin-Wall. Struct., 132, 48-57. https://doi.org/10.1016/j.tws.2018.08.008.
  5. Babaei, H., Kiani, Y. and Eslami, M.R. (2020a), "Large amplitude free vibrations of FGM shallow curved tubes in thermal environment", Smart Struct. Syst., 25, 693-705. https://doi.org/10.12989/sss.2020.25.6.693.
  6. Babaei, H. and Eslami, M.R. (2020b), "On nonlinear vibration and snap-through stability of porous FG curved micro-tubes using two-step perturbation technique", Compos. Struct., 247, 112447. https://doi.org/10.1016/j.compstruct.2020.112447.
  7. Babaei, H. (2021a), "Thermoelastic buckling and post-buckling behavior of temperature-dependent nanocomposite pipes reinforced with CNTs", Eur. Phys. J. Plus., 136, 1093. https://doi.org/10.1140/epjp/s13360-021-01992-x.
  8. Babaei, H. (2021b), "Large deflection analysis of FG-CNT reinforced composite pipes under thermal-mechanical coupling loading", Structures, 34, 886-900 https://doi.org/10.1016/j.istruc.2021.07.091.
  9. Babaei, H. (2021c), "On frequency response of FG-CNT reinforced composite pipes in thermally pre/post buckled configurations", Composite Struct., 276, 114467. https://doi.org/10.1016/j.compstruct.2021.114467.
  10. Babaei, H. (2021d), "Nonlinear analysis of size-dependent frequencies in porous FG curved nanotubes based on nonlocal strain gradient theory", Eng. Comput., https://doi.org/10.1007/s00366-021-01317-7.
  11. Chen, Y., Fu, Y., Zhong, J. and Li, Y. (2017), "Nonlinear dynamic responses of functionally graded tubes subjected to moving load based on a refined beam model", Nonlinear Dyn., 88(2), 1441-1452. https://doi.org/10.1007/s11071-016-3321-0.
  12. Chen, F., Chen, J., Duan, R., Habibi, M. and Khadimallah, M.A. (2022), "Investigation on dynamic stability and aeroelastic characteristics of composite curved pipes with any yawed angle", Compos. Struct., 284, 115195. https://doi.org/10.1016/j.compstruct.2022.115195.
  13. Deniz, A., Avey, M., Fantuzzi, N., Sofiyev, A., Esencan Turkaslan, B., Yuce, S. and Schnack, E. (2021), "Influences of elastic foundations and material gradient on the dynamic response of polymer cylindrical pipes patterned by carbon nanotube subjected to moving pressures", Nanomaterials, 11, 3075. https://doi.org/10.3390/nano11113075.
  14. Eslami, M.R. (2018), Buckling and Postbuckling of Beams, Plates, and Shells, Springer, Switzerland. https://doi.org/10.1007/978-3-319-62368-9.
  15. Fu, Y., Zhong, J., Shao, X. and Chen, Y. (2015), "Thermal postbuckling analysis of functionally graded tubes based on a refined beam model", Int. J. Mech. Sci., 96-97, 58-64. https://doi.org/10.1016/j.ijmecsci.2015.03.019.
  16. Fariborz, J. and Batra, RC. (2019), "Free vibration of bi-directional functionally graded material circular beam using shear deformation theory employing logarithmic function of radius", Compos. Struct., 210, 217-230. https://doi.org/10.1016/j.compstruct.2018.11.036.
  17. Ghadirian, H., Mohebpour, S.R., Malekzadeh, P. and Daneshmand, F. (2022), "Nonlinear free vibrations and stability analysis of FG-CNTRC pipes conveying fluid based on Timoshenko model", Compos. Struct., 292, 115637. https://doi.org/10.1016/j.marstruc.2021.103141.
  18. Ghadirian, H., Mohebpour, S.R., Malekzadeh, P. and Daneshmand, F. (2022), "Numerical instability investigation of composite pipes reinforced by carbon nanotubes based on higher-order shear deformation theory", Marine Struct., 82, 103141. https://doi.org/10.1016/j.marstruc.2021.103141.
  19. Huang, Y. and Li, X.F. (2010a), "Buckling of functionally graded circular columns including shear deformation", Mater. Des., 31(7), 3159-3166. https://doi.org/10.1016/j.matdes.2010.02.032.
  20. Huang, Y. and Li, X.F. (2010b), "Bending and vibration of circular cylindrical beams with arbitrary radial nonhomogeneity", Int. J. Mech. Scie., 52(4), 595-601. https://doi.org/10.1016/j.ijmecsci.2009.12.008.
  21. Malekzadeh, P., Atashi, M.M. and Karami, G. (2009), "In-plane free vibration of functionally graded circular arches with temperature-dependent properties under thermal environment", J. Sound. Vib., 326(3-5), 837-851. https://doi.org/10.1016/j.jsv.2009.05.016.
  22. Malekzadeh, P., Golbahar Haghighi, M.R. and Atashi, M.M. (2010), "Out-of-plane free vibration of functionally graded circular curved beams in thermal environment", Compos. Struct., 92(2), 541-552. https://doi.org/10.1016/j.compstruct.2009.08.040.
  23. Moradi-Dastjerdi, R., Foroutan, M. and Pourasghari, A. (2013), "Dynamic analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotube by a mesh-free method", Mater. Des., 44, 256-266. https://doi.org/10.1016/j.matdes.2012.07.069.
  24. Shen, H.S. (2013), A Two-Step Perturbation Method in Nonlinear Analysis of Beams, Plates and Shells, Wiley & Sons, Singapore.
  25. Shen, H.S., (2009), "Nonlinear bending of functionally graded carbon nanotube reinforced composite plates in thermal environments", Compos. Struct., 91, 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.
  26. Shen, H.S. and Wang, H. (2014), "Nonlinear vibration of shear deformable FGM cylindrical panels resting on elastic foundation in thermal environment", Compos. Part B, 60, 167-177. https://doi.org/10.1016/j.compositesb.2013.12.051.
  27. Sofiyev, A.H., Mammadov, Z., Dimitri, R. and Tornabene, F. (2021), "Vibration analysis of shear deformable carbon nanotubes-based functionally graded conical shells resting on elastic foundations", Mathem. Meth. Appl. Sci., https://doi.org/10.1002/mma.6674.
  28. She, G.L., Ren, Y.R., Yuan, F.G. and Xiao, W.S. (2018), "On vibrations of porous nanotubes", Int. J. Engin. Scie., 125, 23-35. https://doi.org/10.1016/j.ijengsci.2017.12.009.
  29. She, G.L., Ren, Y.R. and Yuan, F.G. (2019), "Hygro-thermal wave propagation in functionally graded double-layered nanotubes systems", Steel Comp. Struct., 31(6), 641-653. https://doi.org/10.12989/scs.2019.31.6.641.
  30. Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2019), "Refined shear deformation theories for laminated composite arches and beams with variable thickness: Natural frequency analysis", Engin. Anal. Boundary Elem., 100, 24-47. https://doi.org/10.1016/j.enganabound.2017.07.029.
  31. Vakili Tahami, F., Bighlari, H. and Raminnea, M. (2018) "Hot fluid induced temperature-dependent vibration and instability of embedded FG-CNTRC Reddy pipes", Mech. Adv. Mater. Struct., 25, 407-424. https://doi.org/10.1080/15376494.2017.1285460.
  32. Zhong, J., Fu, Y., Wan, D. and Li, Y. (2016), "Nonlinear bending and vibration of functionally graded tubes resting on elastic foundations in thermal environment based on a refined beam model", Appl. Math. Model., 40(17-18), 7601-7614. https://doi.org/10.1016/j.apm.2016.03.031.