DOI QR코드

DOI QR Code

Modelling headed stud shear connectors of steel-concrete pushout tests with PCHCS and concrete topping

  • Received : 2022.05.25
  • Accepted : 2023.01.19
  • Published : 2023.02.25

Abstract

The use of precast hollow-core slabs (PCHCS) in civil construction has been increasing due to the speed of execution and reduction in the weight of flooring systems. However, in the literature there are no studies that present a finite element model (FEM) to predict the load-slip relationship behavior of pushout tests, considering headed stud shear connector and PCHCS placed at the upper flange of the downstand steel profile. Thus, the present paper aims to develop a FEM, which is based on tests to fill this gap. For this task, geometrical non-linear analyses are carried out in the ABAQUS software. The FEM is calibrated by sensitivity analyses, considering different types of analysis, the friction coefficient at the steel-concrete interface, as well as the constitutive model of the headed stud shear connector. Subsequently, a parametric study is performed to assess the influence of the number of connector lines, type of filling and height of the PCHCS. The results are compared with analytical models that predict the headed stud resistance. In total, 158 finite element models are processed. It was concluded that the dynamic implicit analysis (quasi-static) showed better convergence of the equilibrium trajectory when compared to the static analysis, such as arc-length method. The friction coefficient value of 0.5 was indicated to predict the load-slip relationship behavior of all models investigated. The headed stud shear connector rupture was verified for the constitutive model capable of representing the fracture in the stress-strain relationship. Regarding the number of connector lines, there was an average increase of 108% in the resistance of the structure for models with two lines of connectors compared to the use of only one. The type of filling of the hollow core slab that presented the best results was the partial filling. Finally, the greater the height of the PCHCS, the greater the resistance of the headed stud.

Keywords

Acknowledgement

The authors would like to thank Construcao Metalica - Gerdau Acos Brasil for making available the data related to COPPETEC, PEC-18541. This study was financed by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior - Brasil (CAPES) - Finance Code 001 and the National Council for Scientific and Technological Development (CNPq).

References

  1. Ahmed, I.M. and Tsavdaridis, K.D. (2019), "The evolution of composite flooring systems: applications, testing, modelling and eurocode design approache", J. Construct. Steel Res., 155, 286-300. https://doi.org/10.1016/j.jcsr.2019.01.007.
  2. American Institute for Steel Construction (AISC) (2010), Specification for Structural Steel Buildings, ANSI / AISC 360-16. Chicago (IL): American Institute of Steel Construction.
  3. Araujo, D. de L., Sales, M.W.R., de Paulo, S.M. and El Debs, A.L. H.d.C. (2016), "Headed steel stud connectors for composite steel beams with precast hollow-core slabs with structural topping", Eng. Struct., 107, 135-150. https://doi.org/10.1016/j.engstruct.2015.10.050.
  4. AS/NZS 2327 (2017), Composite Structures-Composite Steel-Concrete Construction in Buildings.
  5. Baran, E. (2015), "Effects of cast-in-place concrete topping on flexural response of precast concrete hollow-core slabs", Eng. Struct., 98, 19-117. https://doi.org/10.1016/j.engstruct.2015.04.017.
  6. Batista, E.M., and Landesmann, A. (2016). Analise experimental de vigas mistas de aco e concreto compostas por lajes alveolares e perfis laminados. COPPETEC, PEC-18541.
  7. Cao, J. and Shao, X. (2019), "Finite element analysis of headed studs embedded in thin UHPC", J. Construct. Steel Res., 161, 355-368. https://doi.org/10.1016/j.jcsr.2019.03.016.
  8. Carreira, D.J. and Chu, K.H. (1985), "Stress-Strain Relationship for Plain Concrete in Compression", ACI Journal Proceedings, 82(6), 797-804. https://doi.org/10.14359/10390.
  9. Carreira, D.J. and Chu, K.H. (1986), "Stress-Strain Relationship for Reinforced Concrete in Tension", ACI Journal Proceedings, 83(1), https://doi.org/10.14359/1756.
  10. CEN- European Committee for Standardization. (2004). Eurocode 4: Design Compos. Steel Concrete Struct. - Part 1-1: General rules and rules for Buildings Eurocode.
  11. Chi, Y., Yu, M., Huang, L. and Xu, L. (2017), "Finite element modeling of steel-polypropylene hybrid fiber reinforced concrete using modified concrete damaged plasticity", Eng. Struct., 148, 23-35. https://doi.org/10.1016/j.engstruct.2017.06.039.
  12. Committee, A. and Institute, A.C. (2008), Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary (Vol. 2007). https://books.google.co.uk/books?hl=en&lr=&id=c6yQszMV2-EC&oi=fnd&pg=PT10&dq=concrete&ots=nWUrH_-zNL&sig=UshlYyVQSHxVDcaAdLIMw-9gylQ.
  13. Dassault Systemes Simulia, (2012), Abaqus 6.12 Online Documentation.
  14. Degtyarev, V.V., Hicks, S.J. and Hajjar, J.F. (2022), "Design models for predicting shear resistance of studs in solid concrete slabs based on symbolic regression with genetic programming", Steel Compos. Struct., 3, 293-309. https://doi.org/10.12989/scs.2022.43.3.293.
  15. El-Lobody, E. and Lam, D. (2002). "Modelling of headed stud in steel-precast composite beams", Steel Compos. Struct., 2(5), 355-378. https://doi.org/10.12989/scs.2002.2.5.355.
  16. Ellobody, E. and Young, B. (2006), "Performance of shear connection in composite beams with profiled steel sheeting", Journal of Constructional Steel Research, 62(7), 682-694. https://doi.org/10.1016/j.jcsr.2005.11.004.
  17. Ferreira, F.P.V., Tsavdaridis, K.D., Martins, C.H., and De Nardin, S. (2021), "Buckling and post-bckling analyses of composite cellular beams", Compos. Struct., 262. https://doi.org/10.1016/j.compstruct.2021.113616.
  18. Ferreira, Felipe Piana Vendramell, Martins, C.H., and De Nardin, S. (2021), "Sensitivity analysis of composite cellular beams to constitutive material models and concrete fracture", Int. J. Struct. Stability Dynamics, 21(01), 2150008. https://doi.org/10.1142/S0219455421500085.
  19. Ferreira, Felipe Piana Vendramell, Tsavdaridis, K.D., Martins, C. H. and De Nardin, S. (2021a), "Steel-concrete-composite beams with precast hollow-core slabs: A sustainable solution", Sustainability, 13(8), 4230. https://doi.org/10.3390/su13084230.
  20. Ferreira, Felipe Piana Vendramell, Tsavdaridis, K.D., Martins, C. H. and De Nardin, S. (2021b), Ultimate strength prediction of steel-concrete composite cellular beams with PCHCS. Eng. Struct., 236, 112082. https://doi.org/10.1016/j.engstruct.2021.112082.
  21. Ferreira, Felipe Piana Vendramell, Tsavdaridis, K.D., Martins, C. H. and De Nardin, S. (2021c), "Composite action on web-post buckling shear resistance of composite cellular beams with PCHCS and PCHCSCT", Eng. Struct., 246, 113065. https://doi.org/10.1016/j.engstruct.2021.113065.
  22. Gao, Y., Li, C., Wang, X., Zhou, Z., Fan, L. and Heng, J. (2021), "Shear-slip behaviour of prefabricated composite shear stud connectors in composite bridges", Eng. Struct., 240(February), 112148. https://doi.org/10.1016/j.engstruct.2021.112148.
  23. GH, G. (2014), Design Compos. Beams using precast Concrete Slabs in Ac- cordance with EUROCODE 4.
  24. Girhammar, U.A. and Pajari, M. (2008), "Tests and analysis on shear strength of composite slabs of hollow core units and concrete topping", Construct. Build. Mater., 22(8), 1708-1722. https://doi.org/10.1016/j.conbuildmat.2007.05.013.
  25. Gouchman, G.H. (2014), "Design of composite beams using precast concrete slabs in accordance with EUROCODE 4. SCI P401", Steel Construct. Institute.
  26. Guezouli, S., Lachal, A. and Nguyen, Q.H. (2013), "Numerical investigation of internal force transfer mechanism in push-out tests", Eng. Struct., 52, 140-152. https://doi.org/10.1016/j.engstruct.2013.02.021.
  27. Guezouli, Sa. and Lachal, A. (2012), "Numerical analysis of frictional contact effects in push-out tests", Eng. Struct., 39-50. 
  28. Hamilton, T.R. (1989), "Thesis for admission to corporate membership of Institution of Structural Engineers", Compos. Steel Precast Concrete Slab Construct.
  29. Han, Q., Wang, Y., Xu, J., Xing, Y. and Yang, G. (2017), "Numerical analysis on shear stud in push-out test with crumb rubber concrete", J. Construct. Steel Res., 130, 148-158. https://doi.org/10.1016/j.jcsr.2016.12.008.
  30. Hassan, M.K. (2016), Behaviour of Hybrid Stainless-Carbon Steel Composite Beam-Column Joints. https://pdfs.semanticscholar.org/a51b/92a1212245513f131ca76f9f257b4b6a7cf2.pdf.
  31. Hassan, Md Kamrul, Subramanian, K.B., Saha, S. and Sheikh, M. N. (2021), "Behaviour of prefabricated steel-concrete composite slabs with a novel interlocking system-Numerical analysis", Eng. Struct., 245(March), 112905. https://doi.org/10.1016/j.engstruct.2021.112905.
  32. Hicks, S.J. and Lawson, R.M. (2003), Design of Composite Beams Using Precast Concrete Slabs. https://doi.org/10.13140/RG.2.2.23890.35529.
  33. Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6(6), 773-781. https://doi.org/10.1016/0008-8846(76)90007-7.
  34. Hosseinpour, M., Rossi, A., Sander Clemente de Souza, A. and Sharifi, Y. (2022), "New predictive equations for LDB strength assessment of steel-concrete composite beams", Eng. Struct., 258(July), 114121. https://doi.org/10.1016/j.engstruct.2022.114121.
  35. Hu, Y., Zhao, G., He, Z., Qi, J. and Wang, J. (2020), "Experimental and numerical study on static behavior of grouped large-headed studs embedded in UHPC", Steel Compos. Struct., 36(1), 103-118. https://doi.org/10.12989/scs.2020.36.1.103.
  36. Ibrahim, I.S., Elliott, K.S., Abdullah, R., Kueh, A.B.H., Sarbini., N. N. (2016), "Experimental study on the shear behaviour of precast concrete hollow core slabs with concrete topping", Eng. Struct., 125, 80-90. https://doi.org/10.1016/j.engstruct.2016.06.005.
  37. Katwal, U., Tao, Z. and Hassan, M.K. (2018), "Finite element modelling of steel-concrete composite beams with profiled steel sheeting", J. Construct. Steel Res., 146(July), 1-15. https://doi.org/10.1016/j.jcsr.2018.03.011.
  38. Katwal, U., Tao, Z. and Uy, B. (2020), "Load sharing mechanism between shear studs and profiled steel sheeting in push tests", J. Construct. Steel Res., 174(August), 106279. https://doi.org/10.1016/j.jcsr.2020.106279.
  39. Kim, B., Wright, H.D. and Cairns, R. (2001), "The behaviour of through-deck welded shear connectors: An experimental and numerical study", J. Construct. Steel Res., 57(12), 1359-1380. https://doi.org/10.1016/S0143-974X(01)00037-2.
  40. Krahl, P.A. (2018), Lateral Stability of Ultra-High Performance Fiber-Reinforced Concrete Beams with Emphasis in Transitory Phases, Ph.D. Dissertation, Universidade de Sao Paulo.
  41. Kruszewski, D., Zaghi, A.E. and Wille, K. (2019), "Finite element study of headed shear studs embedded in ultra-high performance concrete", Eng. Struct., 188(March), 538-552. https://doi.org/10.1016/j.engstruct.2019.03.035.
  42. Lam, D., Elliott, K.S. and Nethercot, D.A. (2000a), "Experiments on composite steel beams with precast concrete hollow core floor slabs", Proceedings of the Institution of Civil Engineers: Structures and Buildings, 140(2), 127-138. https://doi.org/10.1680/stbu.2000.140.2.127.
  43. Lam, D., Elliott, K.S. and Nethercot, D.A. (2000b), "Parametric study on composite steel beams with precast concrete hollow core floor slabs. J. Construct. Steel Res., 54(2), 283-304. https://doi.org/10.1016/S0143-974X(99)00049-8.
  44. Lam, D. (1998), Depart. Civil Eng. Compos. Steel Beams Using Precast Concrete Hollow Core Floor Slabs by Thesis submitted to the Doctor of Philosophy.
  45. Lam, D. (2007a), "Capacities of headed stud shear connectors in composite steel beams with precast hollowcore slabs", J. Construct. Steel Res., 63(9), 1160-1174. https://doi.org/10.1016/j.jcsr.2006.11.012.
  46. Lam, D. (2007b), "Designing composite beams with precast hollowcore slabs to Eurocode 4", Adv. Steel Construct., 3(2), 594-606. https://doi.org/10.18057/IJASC.2007.3.2.
  47. Lam, D. and El-Lobody, E. (2005), "Behavior of headed stud shear connectors in composite beam", J. Struct. Eng., 131(1), 96-107. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:1(96).
  48. Lee, J. and Fenves, G.L. (1998), "Plastic-Damage Model for Cyclic Loading of Concrete Structures", J. Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(asce)0733-9399(1998)124:8(892).
  49. Lin, Z., Liu, Y. and He, J. (2015), "Static behaviour of lying multi-stud connectors in cable-pylon anchorage zone", Steel Compos. Struct., 18(6), 1369-1389. https://doi.org/10.12989/scs.2015.18.6.1369.
  50. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", Int. J. Solids Struct., 25(3), 299- 326. https://doi.org/10.1016/0020-7683(89)90050-4.
  51. Meng, H., Wang, W. and Xu, R. (2022), "Analytical model for the Load-Slip behavior of headed stud shear connectors", Eng. Struct., 252(November), 113631. https://doi.org/10.1016/j.engstruct.2021.113631.
  52. Moy, S.S.J. and Tayler, C. (1996), "The effect of precast concrete planks on shear connector strength", J. Construct. Steel Res., 36(3), 201-213. https://doi.org/10.1016/0143-974X(95)00017-P
  53. Nguyen, H.T. and Kim, S.E. (2009), "Finite element modeling of push-out tests for large stud shear connectors", J. Construct. Steel Res., 65(10-11), 1909-1920. https://doi.org/10.1016/j.jcsr.2009.06.010.
  54. Nguyen, H.T.N. and Tan, K.H. (2021), "Shear response of deep precast/prestressed concrete hollow core slabs subjected to fire", Eng. Struct., 227(November), 111398. https://doi.org/10.1016/j.engstruct.2020.111398.
  55. Nguyen, T.N.H., Tan, K.H. and Kanda, T. (2019), "Investigations on web-shear behavior of deep precast, prestressed concrete hollow core slabs", Eng. Struct., 183(August), 579-593. https://doi.org/10.1016/j.engstruct.2018.12.052.
  56. Oliveira, V.M. de, Rossi, A., Ferreira, F.P.V. and Martins, C.H. (2022), "Stability behavior of steel-concrete composite cellular beams subjected to hogging moment", Thin-Wall. Struct., 173(February), 108987. https://doi.org/10.1016/j.tws.2022.108987.
  57. Qi, J., Wang, J., Li, M. and Chen, L. (2017), "Shear capacity of stud shear connectors with initial damage: Experiment, FEM model and theoretical formulation", Steel Compos. Struct., 25(1), 79-92. https://doi.org/10.12989/scs.2017.25.1.079.
  58. Queiroz, F.D., Vellasco, P.C.G.S. and Nethercot, D.A. (2007), "Finite element modelling of composite beams with full and partial shear connection", J. Construct. Steel Res., 63(4), 505-521. https://doi.org/10.1016/j.jcsr.2006.06.003.
  59. Qureshi, J., Lam, D. and Ye, J. (2011a), "Effect of shear connector spacing and layout on the shear connector capacity in composite beams", J. Construct. Steel Res., 67(4), 706-719. https://doi.org/10.1016/j.jcsr.2010.11.009.
  60. Qureshi, J. Lam, D. and Ye, J. (2011b), "The influence of profiled sheeting thickness and shear connector's position on strength and ductility of headed shear connector", Eng. Struct., 33(5), 1643-1656. https://doi.org/10.1016/j.engstruct.2011.01.035.
  61. Rossi, A., de Souza, A.S.C., Nicoletti, R.S. and Martins, C.H. (2021), "The influence of structural and geometric imperfections on the LDB strength of steel-concrete composite beams", Thin-Wall. Struct., 162, 107542. https://doi.org/10.1016/j.tws.2021.107542.
  62. Rossi, A., Nicoletti, R.S., de Souza, A.S.C. and Martins, C.H. (2020), "Numerical assessment of lateral distortional buckling in steel-concrete composite beams", J. Construct. Steel Res., 172, 106192. https://doi.org/10.1016/j.jcsr.2020.106192.
  63. Rossi, A., Souza, A.S.C. de, Nicoletti, R.S. and Martins, C.H. (2021), "Stability behavior of Steel-concrete Composite Beams subjected to hogging moment", Thin-Wall. Struct., 167, 108193. https://doi.org/10.1016/j.tws.2021.108193.
  64. Shen, M.H. and Chung, K.F. (2016), "Structural Behaviour of Stud Shear Connections with Solid and Composite Slabs Under Co-Existing Shear and Tension Forces", Struct., 9, 79-90. https://doi.org/10.1016/j.istruc.2016.09.011.
  65. Souza, P.T.d., Kataoka, M.N. and El Debs., A.L.H.C. (2017), "Experimental and numerical analysis of the push-out test on shear studs in hollow core slabs", Eng. Struct., 147, 398-409. https://doi.org/10.1016/j.engstruct.2017.05.068.
  66. Wijesiri Pathirana, S., Uy, B., Mirza, O. and Zhu, X. (2016), "Flexural behaviour of composite steel-concrete beams utilising blind bolt shear connectors", Eng. Struct., 114, 181-194. https://doi.org/10.1016/j.engstruct.2016.01.057.
  67. Xu, C., Sugiura, K., Wu, C. and Su, Q. (2012), "Parametrical static analysis on group studs with typical push-out tests", J. Construct. Steel Res., 72, 84-96. https://doi.org/10.1016/j.jcsr.2011.10.029.
  68. Xu, Q., Sebastian, W., Lu, K., Yao, Y. and Wang, J. (2022), "Shear behaviour and calculation model for stud-UHPC connections: Finite element and theoretical analyses", Eng. Struct., 254(November 2021), 113838. https://doi.org/10.1016/j.engstruct.2022.113838.