DOI QR코드

DOI QR Code

Wind-sand tunnel experiment on the windblown sand transport and sedimentation over a two-dimensional sinusoidal hill

  • Lorenzo Raffaele (Department of Architecture and Design, Politecnico di Torino) ;
  • Gertjan Glabeke (Environmental and Applied Fluid Dynamics Department, von Karman Institute for Fluid Dynamics) ;
  • Jeroen van Beeck (Environmental and Applied Fluid Dynamics Department, von Karman Institute for Fluid Dynamics)
  • Received : 2022.07.29
  • Accepted : 2023.02.21
  • Published : 2023.02.25

Abstract

Turbulent wind flow over hilly terrains has been extensively investigated in the scientific literature and main findings have been included in technical standards. In particular, turbulent wind flow over nominally two-dimensional hills is often adopted as a benchmark to investigate wind turbine siting, estimate wind loading, and dispersion of particles transported by the wind, such as atmospheric pollutants, wind-driven rain, windblown snow. Windblown sand transport affects human-built structures and natural ecosystems in sandy desert and coastal regions, such as transport infrastructures and coastal sand dunes. Windblown sand transport taking place around any kind of obstacle is rarely in equilibrium conditions. As a result, the modelling of windblown sand transport over complex orographies is fundamental, even if seldomly investigated. In this study, the authors present a wind-sand tunnel test campaign carried out on a nominally two-dimensional sinusoidal hill. A first test is carried out on a flat sand fetch without any obstacle to assess sand transport in open field conditions. Then, a second test is carried out on the hill model to assess the sand flux overcoming the hill and the morphodynamic evolution of the sand sedimenting over its upwind slope. Finally, obtained results are condensed into a dimensionless parameter describing its sedimentation capability and compared with values resulting from other nominally two-dimensional obstacles from the literature.

Keywords

Acknowledgement

The study is part of the MSCA-IF-2019 research project Hybrid Performance Assessment of Sand Mitigation Measures (HyPer SMM, hypersmm.vki.ac.be). This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 885985. The study has been jointly developed in the framework of the research project PROtection Technologies from Eolian Events for Coastal Territories (PROTEECT, www.proteect.polito.it). This project has received founding from Italian Ministry for University and Research (PON-FSE REACT-EU) and Politecnico di Torino. The experimental campaign has been developed in the framework of the Windblown Sand Modelling and Mitigation (WSMM, www.polito.it/WSMM) joint research, development and consulting group established between Politecnico di Torino and Optiflow Company.

References

  1. Andreotti, B., Claudin, P. and Pouliquen, O. (2010), "Measurements of the aeolian sand transport saturation length", Geomorphology, 123(3-4), 343-348. https://doi.org/10.1016/j.geomorph.2010.08.002.
  2. Anno, Y. (1984), "Requirements for modelling of a snowdrift", Cold Reg. Sci. Tech., 8(3), 241-252. https://doi.org/10.1016/0165-232X(84)90055-7.
  3. Bitsuamlak, G., Stathopoulos, T. and Bedard, C. (2006), "Effects of upstream two-dimensional hills on design wind loads: A computational approach", Wind Struct., 9(1), 37-58. http://dx.doi.org/10.12989/was.2006.9.1.037
  4. Bitsuamlak, G., Stathopoulos, T. and Bedard, C. (2004), "Numerical evaluation of wind flow over complex terrain: Review", J. Aerospace Eng., 17(4), 135-145. https://doi.org/10.1061/(ASCE)0893-1321(2004)17:4(135).
  5. Blocken, B., Careliet, J. and Poesen, J. (2005), "Numerical simulation of the wind-driven rainfall distribution over small-scale topography in space and time", J. Hydrology, 315(1-4), 252-273. https://doi.org/10.1016/j.jhydrol.2005.03.029.
  6. Bruno, L., Horvat, M. and Raffaele, L. (2018), "Windblown sand along railway infrastructures: A review of challenges and mitigation measures", J. Wind Eng. Ind., Aerod., 177, 340-365. https://doi.org/10.1016/j.jweia.2018.04.021.
  7. Cao, S. and Tamura, T. (2006), "Experimental study on roughness effects on turbulent boundary layer flow over a two-dimensional steep hill", J. Wind Eng. Ind. Aerod., 94, 1-19. https://doi.org/10.1016/j.jweia.2005.10.001.
  8. Cao, S. and Tamura, T. (2007), "Effects of roughness blocks on atmospheric boundary layer flow over a two-dimensional low hill with/without sudden roughness change", J. Wind Eng. Ind. Aerod., 95, 679695. https://doi.org/10.1016/j.jweia.2007.01.002.
  9. Claudin, P., Wiggs, G.F.S. and Andreotti, B. (2013), "Field evidence for the upwind velocity shift at the crest of low dunes", Bound. Layer Meteorol., 148, 195206. https://doi.org/10.1007/s10546-013-9804-3.
  10. Comola, F., Giometto, M.G., Salesky, S.T., Parlange, M.B. and Lehning, M. (2019), "Preferential deposition of snow and dust over hills: Governing processes and relevant scales", J. Geophysic. Res. Atmos., 124, 79517974. https://doi.org/10.1029/2018JD029614.
  11. Creyssels, M., Dupont, P., El Moctar, A.O., Valence, A., Cantat, I., Jenkins, J.T., Pasini, J.M. and Rasmussen, K.R. (2009), "Saltating particles in a turbulent boundary layer: experiment and theory", J. Fluid Mech., 625, 47-74. https://doi.org/10.1017/S0022112008005491.
  12. Dong, Z., Wang, H., Liu, X. and Wang, X. (2004), "The blown sand flux over a sandy surface: a wind tunnel investigation on the fetch effect", Geomorphology, 57(1-2), 117-127. https://doi.org/10.1016/S0169-555X(03)00087-4.
  13. Essel, E.E., Nematollahi, A., Thacher, E.W. and Tachie, M.F. (2015), "Effects of upstream roughness and Reynolds number on separated and reattached turbulent flow", J. Turbulence, 16(9), 872-899. https://doi.org/10.1080/14685248.2015.1033060.
  14. Farimani, A.B., Ferreira, A.D. and Sousa, A.C.M. (2011), "Computational modeling of the wind erosion on a sinusoidal pile using a moving boundary method", Geomorphology, 130(3-4), 299-311. https://doi.org/10.1016/j.geomorph.2011.04.012.
  15. Ferreira, A.D. and Fino, M.R.M. (2012), "A wind tunnel study of wind erosion and profile reshaping of transverse sand piles in tandem", Geomorphology, 139-140, 230-241. https://doi.org/10.1016/j.geomorph.2011.10.024.
  16. Ferreira, A.D. Lopes, A.M.G., Viegas, D.X. and Sousa, A.C.M. (1995), "Experimental and numerical simulation of flow around two-dimensional hills", J. Wind Eng. Indust. Aerodynamics, 54-55, 173-181. https://doi.org/10.1016/0167-6105(94)00040-K
  17. Finnigan, J.J. (1988), Air Flow Over Complex Terrain, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73845-613.
  18. Goossens, D. (2006), "Aeolian deposition of dust over hills: the effect of dust grain size on the deposition pattern", Earth Surface Processes and Landforms, 31, 762-776. https://doi.org/10.1002/esp.1272.
  19. Ho, T.D., Valance, A., Dupont, P. and El Moctar, A.O. (2011), "Scaling Laws in Aeolian Sand Transport", Phys. Rev. Lett., 106(9), 094501. https://doi.org/10.1103/PhysRevLett.106.094501.
  20. Hotta, S. and Horikawa, K. (1991), "Function of sand fence placed in front of embankment", Coastal Eng., 2, 2754-2767. https://doi.org/10.1061/9780872627765.211.
  21. Huang, G., Le Ribault, C., Vinkovic, I. and Simoens, S. (2019), "Large-Eddy Simulation of erosion and deposition over multiple two-dimensional Gaussian hills in a turbulent boundary layer", Bound. Layer Meteorol., 173, 193-222. https://doi.org/10.1007/s10546-019-00463-2.
  22. Ke, S., Dong, Y., Zhu, R. and Wang, T. (2020), "Wind-sand coupling movement induced by strong typhoon and its influences on aerodynamic force distribution of the wind turbine", Wind Struct., 30(4), 433-450. https://doi.org/10.12989/was.2020.30.4.433.
  23. Kok, J.F., Parteli, E.J.R., Michaels, T.I. and Karam, D.B. (2012), "The physics of wind-blown sand and dust", Reports Progress Phys., 75(10), 106901. https://doi.org/10.1088/0034-4885/75/10/106901.
  24. Lee, S.J., Lim, H.C. and Park, K.C. (2002), "Wind flow over sinusoidal hilly obstacles located in a uniform flow", Wind Struct., 5(6), 515-526. https://doi.org/10.12989/was.2002.5.6.515.
  25. Lo Giudice, A., Nuca, R., Preziosi, L. and Coste, N. (2019), "Wind-blown particulate transport: A review of computational fluid dynamics models", Mathem. Eng., 1, 508-547. https://doi.org/10.3934/mine.2019.3.508.
  26. Lo Giudice, A. and Preziosi, L. (2020), "A fully Eulerian multiphase model of windblown sand coupled with morphodynamic evolution: Erosion, transport, deposition, and avalanching", Appl. Mathem. Model., 79, 68-84. https://doi.org/10.1016/j.apm.2019.07.060.
  27. Ma, W. and Li, F. and Sun, Y. and Li, J. and Zhou, X. (2021), "Field measurement and numerical simulation of snow deposition on an embankment in snowdrift", Wind. Struct., 32, 453-469. https://doi.org/10.12989/was.2021.32.5.453.
  28. Martin, R.L. and Kok, J.F. (2017), "Wind-invariant saltation heights imply linear scaling of aeolian saltation flux with shear stress", Sci. Adv., 3, e1602569. https://doi.org/10.1126/sciadv.1602569.
  29. Martinez, M.L., Hesp, P.A. and Gallego-Fernndez, J.B. (2013), Coastal Dunes: Human Impact and Need for Restoration, Springer. http://doi.org/10.1007/978-3-642-33445-01.
  30. Parker, S.T. and Kinnersley, R.P. (2004), "A computational and wind tunnel study of particle dry deposition in complex topography", Atmosp. Environ., 38, 3867-3878. https://doi.org/10.1016/j.atmosenv.2004.03.046.
  31. Phillips, D.A. (2011), "Analysis of Potential Sand Dune Impacts on Railway Tracks and Methods of Mitigation", GCC Transport and Railway Conference, 17-19, Doha, Qatar, http://www.iktissadevents.com/files/events/gtrc/1/presentations/d2-s8-duncan-phillips.pdf.
  32. Porte -Agel, F., Bastankhah, M. and Shamsoddin, S. (2020), "Wind-Turbine and Wind-Farm Flows: A Review", Bound. Layer Meteorol., 174, 1-59. https://doi.org/10.1007/s10546-019-00473-0.
  33. Preziosi, L., Fransos, D. and Bruno, L. (2015), "A multiphase first order model for non-equilibrium sand erosion, transport and sedimentation", Appl Mathem. Lett., 45, 69-75. https://doi.org/10.1016/j.aml.2015.01.011.
  34. Raffaele, L. and Bruno, L. (2019), "Windblown sand action on civil structures: Definition and probabilistic modelling", Eng. Struct., 178, 88-101. https://doi.org/10.1016/j.engstruct.2018.10.017.
  35. Raffaele, L. and Bruno, L. (2020), "Windblown sand mitigation along railway megaprojects: A comparative study", Struct. Eng. Int., 30, 355-364. https://doi.org/10.1080/10168664.2020.1714530.
  36. Raffaele, L., Bruno, L., Pellerey, F. and Preziosi, L. (2016), "Windblown sand saltation: A statistical approach to fluid threshold shear velocity", Aeolian Res., 23, 79-91. https://doi.org/10.1016/j.aeolia. 2016.10.002.
  37. Raffaele, L., Bruno, L. and Sherman, D.J. (2020), "Statistical characterization of sedimentation velocity of natural particles", Aeolian Res., 44, 100593. https://doi.org/10.1016/j.aeolia.2020.100593
  38. Raffaele, L., Coste, N. and Glabeke, G. (2022), "Life-cycle performance and cost analysis of sand mitigation measures: Toward a hybrid experimental-computational approach", J. Struct. Eng., 148(7), 04022082. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003344.
  39. Raffaele, L., van Beeck, J. and Bruno, L. (2021), "Wind-sand tunnel testing of surface-mounted obstacles: Similarity requirements and a case study on a Sand Mitigation Measure", J. Wind Eng. Indust. Aerodynamics, 214, 104653. https://doi.org/10.1016/j.jweia.2021.104653.
  40. Safaei Pirooz, A.A. and Flay, R.G.J. (2017), "Comparison of speed-up over hills derived from wind-tunnel experiments, wind-loading standards, and numerical modelling", Bound. Layer Meteorol., 168, 213-246. https://doi.org/10.1007/s10546-018-0350-x.
  41. Shao, Y. (2008), Physics and Modelling of Wind Erosion, Springer. https://doi.org/10.1007/978-1-4020-8895-7.
  42. Sherman, D.J. (2020), "Understanding wind-blown sand: Six vexations", Geomorphology, 366, 107193. https://doi.org/10.1016/j.geomorph.2020.107193.
  43. Sherman, D.J. and Farrell, E.J. (2008), "Aerodynamic roughness lengths over movable beds: Comparison of wind tunnel and field data", J. Geophysical Res. Earth Surf., 113, F02S08. https://doi.org/10.1029/2007JF000784.
  44. Sherman, D.J. and Nordstrom, K.F. (1994), "Hazards of windblown sand and coastal sand drifts: A review", J. Coastal Res., 12, 263-275.
  45. Sherman, D.J., Zhang, P., Martin, R.L., Ellis, J.T., Kok, J.F., Farrell, E.J. and Li, B. (2019), "Aeolian ripple migration and associated creep transport rates", Geosci., 9(9), 389. https://doi.org/10.3390/geosciences9090389.
  46. Simoens, S., Saleh, A., Leribault, C., Belhmadi, M., Zegadi, R., Allag, F., Vignon, J.M. and Huang, G. (2015), "Influence of Gaussian Hill on concentration of solid particles in suspension inside turbulent boundary layer", Procedia IUTAM, 17, 110-118. https://doi.org/10.1016/j.piutam.2015.06.015.
  47. Snyder, W.H. and Castro, I.P. (2002), "The critical Reynolds number for rough-wall boundary layers", J. Wind Eng. Indust. Aerodynamics, 90, 41-54. https://doi.org/10.1016/S0167-6105(01)00114-3.
  48. Strypsteen, G., De Sloover, L., De Wulf, A. and Rauwoens, P. (2020), "Downwind evolution of aeolian saltation across an artificially constructed coastal berm", Aeolian Res., 47, 100627. https://doi.org/10.1016/j.aeolia.2020.100627.
  49. Sun, L., Nottrott, A. and Kleissl, J. (2012), "Effect of hilly urban morphology on dispersion in the urban boundary layer", Build. Env., 48, 195-205. https://doi.org/10.1016/j.buildenv.2011.09.005.
  50. Tominaga, Y., Okaze, T. and Mochida, A. (2018), "Wind tunnel experiment and CFD analysis of sand erosion/deposition due to wind around an obstacle", J. Wind Eng. Ind. Aerod., 182, 262-271. https://doi.org/10.1016/j.jweia.2018.09.008.
  51. Valance, A., Rasmussen, K.R., Ould El Moctar, A. and Dupont, P. (2015), "The physics of Aeolian sand transport", Comptes Rendus Physique, 16(1), 105-117. https://doi.org/10.1016/j.crhy.2015.01.006.
  52. von Karman, T. (1948), "Progress in the statistical theory of turbulence", Proceed. Natl. Acad. Sci., 34(11), 530-539. https://doi.org/10.1073/pnas.34.11.53.
  53. White, B.R. (1996), "Laboratory simulation of aeolian sand transport and physical modeling of flow around dunes", Annals Arid Zone, 35, 187-213.
  54. Yu, Z., Zhu, F., Cao, R., Chen, X., Zhao, L. and Zhao, S. (2019), "Wind tunnel tests and CFD simulations for snow redistribution on 3D stepped flat roofs", Wind Struct., 28(1), 31-47. https://doi.org/10.12989/was.2019.28.1.031.
  55. Zhang, N., Kang, J.H. and Lee, S.J. (2010), "Wind tunnel observation on the effect of a porous wind fence on shelter of saltating sand particles", Geomorphology, 120, 224-232. https://doi.org/10.1016/j. geomorph.2010.03.032.
  56. Zhou, X., Hu, J. and Gu, M. (2014), "Wind tunnel test of snow loads on a stepped flat roof using different granular materials", Natural Hazards, 74, 1629-1648. https://doi.org/10.1007/s11069-014-1296-z.