DOI QR코드

DOI QR Code

Power Quality Disturbances Detection and Classification using Fast Fourier Transform and Deep Neural Network

고속 푸리에 변환 및 심층 신경망을 사용한 전력 품질 외란 감지 및 분류

  • 첸센폰 (전남대학교 대학원 컴퓨터공학과) ;
  • 임창균 (전남대학교 컴퓨터공학과)
  • Received : 2023.01.17
  • Accepted : 2023.02.17
  • Published : 2023.02.28

Abstract

Due to the fluctuating random and periodical nature of renewable energy generation power quality disturbances occurred more frequently in power generation transformation transmission and distribution. Various power quality disturbances may lead to equipment damage or even power outages. Therefore it is essential to detect and classify different power quality disturbances in real time automatically. The traditional PQD identification method consists of three steps: feature extraction feature selection and classification. However, the handcrafted features are imprecise in the feature selection stage, resulting in low classification accuracy. This paper proposes a deep neural architecture based on Convolution Neural Network and Long Short Term Memory combining the time and frequency domain features to recognize 16 types of Power Quality signals. The frequency-domain data were obtained from the Fast Fourier Transform which could efficiently extract the frequency-domain features. The performance in synthetic data and real 6kV power system data indicate that our proposed method generalizes well compared with other deep learning methods.

무작위 및 주기적인 변동하는 재생에너지 발전 전력 품질 교란으로 인해 발전 변환 송전 및 배전에서 더 자주 발생하게 된다. 전력 품질 교란은 장비 손상 또는 정전으로 이어질 수 있다. 따라서 서로 다른 전력 품질 외란을 실시간으로 자동감지하고 분류하는 것이 필요하다. 전통적인 PQD 식별 방법은 특징 추출 특징 선택 및 분류의 세 단계로 구성된다. 그러나 수동으로 생성한 특징은 선택 단계에서 정확성을 보장하기 힘들어서 분류 정확도를 향상하는 데에는 한계가 있다. 본 논문에서는 16가지 종류의 전력 품질 신호를 인식하기 위해 CNN(Convolution Neural Networ)과 LSTM(Long Short Term Memory)을 기반으로 시간 영역과 주파수 영역의 특징을 결합한 심층 신경망 구조를 제안하였다. 주파수 영역 데이터는 주파수 영역 특징을 효율적으로 추출할 수 있는 FFT(Fast Fourier Transform)로 얻었다. 합성 데이터와 실제 6kV 전력 시스템 데이터의 성능은 본 연구에서 제안한 방법이 다른 딥러닝 방법보다 일반화되었음을 보여주었다.

Keywords

References

  1. Dash, P.K., Padhee, M. and Panigrahi, T.K., "A hybrid time-frequency approach based fuzzy logic system for power island detection in grid connected distributed generation," International Journal of Electrical Power & Energy Systems, vol. 42, no. 1, 2012, pp. 453-464.  https://doi.org/10.1016/j.ijepes.2012.04.003
  2. Wang, S. and Chen, H., 2019. "A novel deep learning method for the classification of power quality disturbances using deep convolutional neural network," Applied energy, vol. 235, Feb. 2019, pp. 1126-1140.  https://doi.org/10.1016/j.apenergy.2018.09.160
  3. Yalcin, T. and Ozdemir, M., "Pattern recognition method for identifying smart grid power quality disturbance," In 2016 IEEE 17th International Conference on Harmonics and Quality of Power (ICHQP), Oct. 2016, pp. 903-907. 
  4. O. P. Mahela, A. G. Shaik, and N. Gupta, "A critical review of detection and classification of power quality events," Renewable and Sustainable Energy Reviews, vol. 41, 2015, pp. 495-505.  https://doi.org/10.1016/j.rser.2014.08.070
  5. IEEE Power and Energy Society, "IEEE Recommended Practice for Monitoring Electric Power Quality," in IEEE Std 1159-2009 (Revision of IEEE Std 1159-1995), June 2009, pp. 1-94. 
  6. Y. Zhao, T. Li, X. Zhang, and C. Zhang, "Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future," Renewable and Sustainable Energy Reviews, vol. 109, Nov. 2019, pp. 85-101.  https://doi.org/10.1016/j.rser.2019.04.021
  7. Z. Wang, L. Wang, Y. Tan, and J. Yuan, "Fault detection based on Bayesian network and missing data imputation for building energy systems," Applied Thermal Engineering, vol. 182, Jan. 2021, p. 116051. 
  8. C. Y. Lee and Y. X. Shen, "Optimal feature selection for power-quality disturbances classification," IEEE Transactions on power delivery, vol. 26, no. 4, 2011, pp. 2342-2351.  https://doi.org/10.1109/TPWRD.2011.2149547
  9. S. Santoso, W. M. Grady, E. J. Powers, J. Lamoree, and S. C. Bhatt, "Characterization of Distribution Power Quality Events with Fourier and Wavelet Transforms," IEEE Transactions on Power Delivery, vol. 15, no. 4, 2000, pp. 1344-1345.  https://doi.org/10.1109/61.891567
  10. G. T. Heydt, P. S. Fjeld, C. C. Liu, D. Pierce, L. Tu, and G. Hensley, "Applications of the windowed FFT to electric power quality assessment," IEEE Transactions on Power Delivery, vol. 14, no. 4, 1999, pp. 1411-1416.  https://doi.org/10.1109/61.796235
  11. O. P. Mahela and A. G. Shaik, "Recognition of power quality disturbances using S-transform based ruled decision tree and fuzzy C-means clustering classifiers," Applied Soft Computing, vol. 59, 2017, pp. 243-257.  https://doi.org/10.1016/j.asoc.2017.05.061
  12. S. Shukla, S. Mishra, and B. Singh, "Power quality event classification under noisy conditions using EMD-based de-noising techniques," IEEE Transactions on industrial informatics, vol. 10, no. 2, 2014, pp. 1044-1054.  https://doi.org/10.1109/TII.2013.2289392
  13. P. Kanirajan and V. Suresh Kumar, "Power quality disturbance detection and classification using wavelet and RBFNN," Applied Soft Computing, vol. 35, 2015, pp. 470-481.  https://doi.org/10.1016/j.asoc.2015.05.048
  14. F. A. S. Borges, R. A. S. Fernandes, I. N. Silva, and C. B. S. Silva, "Feature Extraction and Power Quality Disturbances Classification Using Smart Meters Signals," IEEE Transactions on Industrial Informatics, vol. 12, no. 2, 2016, pp. 824-833.  https://doi.org/10.1109/TII.2015.2486379
  15. J. Wang, Z. Xu, and Y. Che, "Power Quality Disturbance Classification Based on Compressed Sensing and Deep Convolution Neural Networks," IEEE Access, vol. 7, 2019, pp. 78336-78346.  https://doi.org/10.1109/access.2019.2922367
  16. R. Gong and T. Ruan, "A New Convolutional Network Structure for Power Quality Disturbance Identification and Classification in Micro-Grids," IEEE Access, vol. 8, 2020, pp. 88801-88814.  https://doi.org/10.1109/access.2020.2993202
  17. X. Xiao and K. Li, "Multi-Label Classification for Power Quality Disturbances by Integrated Deep Learning," IEEE Access, vol. 9, 2021, pp. 152250-152260.  https://doi.org/10.1109/ACCESS.2021.3124511
  18. S. G. K. Patro and K. K. sahu, "Normalization: A Preprocessing Stage," arXiv e-prints, Mar. 2015.