DOI QR코드

DOI QR Code

초음파 캐비테이션에 의해 생성되는 라디칼의 발생량 평가를 위한 소노루미네센스 발광강도의 측정

Measurement of sonoluminescence intensity for evaluation of the amount of radical generated by ultrasonic cavitation

  • 투고 : 2022.12.26
  • 심사 : 2023.01.20
  • 발행 : 2023.01.31

초록

이산화티탄 현탁액에서 초음파 캐비테이션 충격파에 의해 발생하는 하이드록실 라디칼(·OH) 및 슈퍼옥사이드 음이온 라디칼(·O2- )은 살균 및 소독 작용을 할 수 있어 활용 가치가 높다. 화학첨가물이 없는 살균 방법으로서의 실용화를 위하여 본 연구에서는 이산화티탄 현탁액에 방사된 강력 초음파에 의해 발생하는 라디칼의 발생 정도를 평가하는 방법을 제안하였다. 제안된 방법에서는 초음파 붕괴에너지에 의해 발광하는 소노루미네센스 현상을 활용하였고, 소노루미네센스에 의한 빛 에너지의 양을 통해 라디칼 발생 정도를 평가하였다. 그 결과, 이산화티탄의 농도가 0.02 wt%인 낮은 농도에서도, 이산화티탄이 없는 경우보다 5배 이상 높은 빛 에너지가 수광되었다. 그 이후, 농도가 0.1 wt%씩 증가함에 따라 발생하는 소노루미네센스의 광도는 약 14.8×10-12 lm씩 선형적으로 증가하였다. 따라서 이산화티탄 현탁액에 강력 초음파를 방사하여 발생하는 라디칼은, 주어진 농도 범위 내에서 이산화티탄의 농도가 증가함에 따라 선형적으로 증가함을 확인할 수 있었다.

The hydroxyl radical (·OH) and superoxide anion radical (·O2- ) generated by the shock wave generated during ultrasonic cavitation collapse in TiO2 suspension are highly useful because they can sterilize and disinfect. For practical use as a sterilization method without any chemicals, in this study, we proposed a method for evaluating the generation of radicals generated by high-intensity ultrasound emitted to titanium dioxide suspension. In the proposed method, the sonoluminescence phenomenon, which emits light by ultrasonic cavitation decay energy, was utilized, and the degree of radical generation was evaluated through the amount of light energy by sonoluminescence. As a result, even at a low concentration of titanium dioxide of 0.02 wt%, light energy 5 times higher than in the absence of titanium dioxide was received. After that, as the concentration increased by 0.1 wt%, the luminous intensity of sonoluminescence increased linearly by about 14.8 × 10-12 lm. Therefore, it was confirmed that the radicals generated by radiating high-intensity ultrasound to the titanium dioxide suspension increased linearly as the concentration of titanium dioxide increased within a given concentration range.

키워드

과제정보

이 논문은 정부의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2022R1F1A1063797)

참고문헌

  1. P. Riesz and T. Kondo, "Free radical formation induced by ultrasound and its biological implications," Free Radic. Biol. Med. 13, 247-270 (1992). https://doi.org/10.1016/0891-5849(92)90021-8
  2. P. Riesz, D. Berdahl, and C. L. Christman, "Free radical generation by ultrasound in aqueous and nonaqueous solutions," Enivron. Health Perspect. 64, 233-252 (1985). https://doi.org/10.1289/ehp.8564233
  3. X. Fang, G. Mark, and C. Sonntag, "OH radical formation by ultrasound in aqueous solutions Part I : the chemistry underlying the terephthalate dosimeter," Ultrason. Sonochem. 3, 57-63 (1996). https://doi.org/10.1016/1350-4177(95)00032-1
  4. P. Khandpur, and P. R. Gogate, "Evaluation of ultrasound based sterilization approaches in terms of shelf life and quality parameters of fruit and vegetable juices," Ultrason. Sonochem. 29, 337-353 (2016). https://doi.org/10.1016/j.ultsonch.2015.10.008
  5. T. Ma, J. Wang, L. Wang, Y. Yang, W. Yang, H. Wang, T. Lan, Q. Zhang, and X. Sun, "Ultrasound-combined sterilization technology : An effective sterilization technique ensuring the microbial safety of grape juice and significantly improving its quality," Foods, 9, 1512 (2020). https://doi.org/10.3390/foods9101512
  6. M. Lopez, T. Calvo, M. Prieto, M. Mugica-Vidal, R. Mugica-Vidal, L. Muro-Fraguas, F. Alba-Elias, and A. Alvarez-Ordones, "A review on non-thermal atmospheric plasma for food preservation: Mode of action, determinants of effectiveness and applications," Front. Microbiol. 10, 622 (2019).
  7. H. Suzuki, S. Yamada, M. Kakikawa, Y. Matsumoto, and M. Iwahara, "Application of giant magnetostrictive actuator in the generation of radicals," JSAEM, 17, S145-S148 (2009).
  8. N. Shimizu, C. Ogino, M. F. Dadjour, and T. Murata, "Sonocatalytic degradation of methylene blue with TiO2 pellets in water," Ultrason. Sonichem. 14, 184-190 (2007). https://doi.org/10.1016/j.ultsonch.2006.04.002
  9. B. Kwon and J. Yoon, "Superoxide anion radical: principle and application" (in Korean), J. Korean Ind. Eng. Chem. 20, 593-602 (2009).
  10. Y. Nosaka, S. Komori, K. Yawata, T. Hirakawa, and A. Y. Nosaka, "Photocatalytic ·OH radical formation in TiO2 aqueous suspension studied by several detection methods," Phys. Chem. Chem. Phys. 5, 4731-4735 (2003). https://doi.org/10.1039/b307433a
  11. E. H. White and M. M. Bursey, "Chemiluminescence of luminol and related hydrazides: the light emission step," J. Am. Chem. Soc. 86, 941-942 (1964). https://doi.org/10.1021/ja01059a051
  12. J. S. Kim, J. H. Kim, M. J. Kim, K. L. Ha, and A. Yamada, "Arrayed ultrasonic transducers on arc surface for plane wave synthesis," Jpn. J. Appl. Phys. 43, 3061-3062 (2004). https://doi.org/10.1143/JJAP.43.3061
  13. C. Sherman and J. Butler, Transducers and Arrays for Underwater Sound (Springer, New York, 2008), Chap. 12.