DOI QR코드

DOI QR Code

Effect of expanding low-salinity water in the East China Sea on underwater sound propagation

동중국해 저염분수의 확장이 수중 음파 전달에 미치는 영향

  • Received : 2022.11.04
  • Accepted : 2022.12.01
  • Published : 2023.01.31

Abstract

The salinity of sea water is known as a less influencing variable in the calculation of the sound speed of the sea water. This study investigated how the low salinity of sea water affects the vertical structure of the sound speed near the mouth of the Yangtze (Changjiang) River when the diluted fresh water extends toward the East China Sea in the summer. As a result of comparing two types of sound speeds considered measured and fixed salinity, sound speeds appeared distinguishable when the halocline formed steeper than the thermocline due to Yangtze-River Diluted Water (YRDW). In addition, unlikely with fixed salinity conditions, when measured salinity was considered, an underwater sound channel appeared in the middle of the thermocline of which the source depth is located. Accordingly, considering the salinity, this study suggests using Expendable Conductivity Temperature Depth (XCTD) and Expendable Sound Velocimeter (XSV) rather than Expandable Bathy Thermograph (XBT) when calculating sound speed because of the strong halocline due to YRDW in the summer.

해수의 염분은 수중 음속 산출에 있어 영향을 적게 미치는 변수로 알려져 있다. 본 연구는 여름철 양쯔강(장강) 희석수가 동중국해로 확장하는 과정에서 양쯔강 하구 인근 해수의 저염분이 음속의 수직구조에 어떻게 영향을 미치는지를 파악하였다. 음속 산출에 활용된 염분을 관측치와 고정값으로 구분 후 각각의 음속을 비교한 결과, 양쯔강 희석수의 영향으로 염분약층이 수온약층보다 강하게 형성되는 경우 음속이 상이하게 나타났다. 또한, 음원을 수온약층의 중간 심도에 위치하여 음선경로를 추적한 결과 염분약층이 강한 경우 고정된 염분으로 계산된 음속에서는 확인되지 않는 수중음파통로가 나타났다. 이러한 결과를 바탕으로 본 연구는 여름철 저염분수에 의한 강한 염분약층이 형성된 조건에서 음속 산출 시 Expandable Bathy Thermograph(XBT)보다는 실제 염분이 고려된 관측기기인 Expendable Conductivity Temperature Depth(XCTD)와 Expendable Sound Velocimeter(XSV)의 활용이 중요함을 제시한다.

Keywords

Acknowledgement

본 연구는 인터넷상에 공개된 미항공우주국의 SMAP위성과 기상청 국립기상과학원의 ARGO 플로트 관측 자료를 바탕으로 개인적으로 수행되었다.

References

  1. R. J. Urick, Principle of Underwater Sound, 3rd ed. (McGraw-hill, New York, 1983), Chapter 5.
  2. Discovery of Sound in the Sea, https://dosits.org/tutorials/science/tutorial-speed/, (Last viewed September 14, 2022).
  3. S. Lim, "Ana lysis of differences between the sonic layer depth and the mixed layer depth in the East Sea" (in Korean), JKICE, 19, 1259-1268 (2015). https://doi.org/10.6109/jkiice.2015.19.5.1259
  4. Y. Ha, "Analysis of false alarm possibility using simulation of back-scattering signals from water masses" (in Korean), J. Acoust. Soc. Kr. 40, 99-108 (2021).
  5. N. Kim, J. Lee, G. Cho, and S. Kim, "Korean climate change assessment report 2020" Ministry of Environment, Seoul, 2020.
  6. L. Ran, X.X. Lu, and S. Liu, " Dynamics of riverine CO2 in the Yangtze River fluvialnetwork and their implications for carbon evasion," Biogeosciences, 14, 2183-2198 (2017). https://doi.org/10.5194/bg-14-2183-2017
  7. R. C. Beardsley, R. Limeburner, H. Yu, and G. A. Cannon, "Discharge of the Changjiang (Yangtze river) into the East China sea," Cont. Shelf Res. 4, 57-76 (1985). https://doi.org/10.1016/0278-4343(85)90022-6
  8. H. J. Lie, C. H. Cho, J. H. Lee, and S. Lee, "Structure and eastward extension of the Changjiang River plume in the East China Sea," JGR Oceans. 108, 3077 (2003).
  9. J. H. Moon, I. C. Pang, and J. H. Yoon, "Response of the Changjiang diluted water around Jeju Island to external forcings: A modeling study of 2002 and 2006," Cont. Shelf Res. 29, 1549-1564 (2009). https://doi.org/10.1016/j.csr.2009.04.007
  10. H. Kim, J. Kim, and D. Paeng, "Analysis of surface sound channel by low salinity water and its midfrequency acoustic characteristics in the East China Sea and the Gulf of Guinea" (in Korean), J. Acoust. Soc. Kr. 34, 1-11 (2015). https://doi.org/10.7776/ASK.2015.34.1.001
  11. J. Kim, T. Bok., D. Paeng, I. Pang, and C. Lee, "Acoustic channel formation and sound speed variation by low-salinity water in the western sea of Jeju during summer" (in Korean), J. Acoust. Soc. Kr. 32, 1-13 (2013). https://doi.org/10.7776/ASK.2013.32.1.001
  12. A. Fore, S. Yueh, W. Tang, and A. Hayashi, "SMAP Salinity and Wind Speed Data User's Guide," JPL., 2020.
  13. Physical Oceaonography Distributed Active Archive Center, https://podaac.jpl.nasa.gov/dataset/SMAP_JPL_L3_SSS_CAP_MONTHLY_V5, (Last September 14, 2022).
  14. Soil Moisture Active Passive, https://smap.jpl.nasa.gov/, (Last viewed September 14, 2022).
  15. H. Lee, Y. S. Chang, T. H. Kim, J. H. Kim, Y. H. Youn, J. W. Seo, and T. G. Seo, "Global ocean observation with ARGO floats: Introduction to ARGO program" (in Korean), Atmos. 14, 4-23 (2004).
  16. K. H. Oh, Assessment of profiles and intermediate to deep level circulation of the southern part of the East Sea from Argo floats (Ph.D. thesis, Jeju National University, 2005).
  17. ARGO NIMS, http://argo.nims.go.kr/argo3/, (Last viewed September 14, 2022).
  18. B. J. Kil, "Improvement of the accuracy of XBT based underwater sound speed using the unmanned maritime system and satellite remote sensing data in the Yellow Sea" (in Korean), J. Acoust. Soc. Kr. 38, 621-629 (2019).
  19. B. J. Kil, "A result of prolonged monitoring under water sound speed in the center of the Yellow Sea" (in Korean), J. Acoust. Soc. Kr. 40, 183-191 (2021).
  20. M. B. Porter, "The BELLHOP manual and user's guide: preliminary draft," Heat, Light, and Sound Research, Inc., 2011.
  21. R. Acharya, "Sono bouys," Indian J. Geo-Mar. Sci. 47, 1723-1726 (2018).
  22. H. Medwin, "Speed of sound in water:a simple equation for realistic parameters," J. Acoust. Soc. Am. 58, 1318-1319 (1975). https://doi.org/10.1121/1.380790
  23. Ocean Data View, http://odv.awi.de, (Last viewed September 14, 2022).
  24. J. Hao, Y. Chen, F. Wang, and P. Lin, "Seasonal thermocline in the China Seas and northwestern Pacific Ocean," JGR Oceans. 117, C02022 (2012).
  25. J. Kim, H. Kim, D.-G. Paeng, T.-H. Bok, and J. Lee, "Low-salinity-induced surface sound channel in the western sea of Jeju Island during summer," J. Acoust. Soc. Am. 137, 1576-1585 (2015). https://doi.org/10.1121/1.4913812
  26. R. K. Chow and D. G. Browning, "A study of secondary sound channels due to temperature inversions in the Northeast Pacific Ocean," J. Acoust. Soc. Am. 72, S57 (1982).
  27. C. Alberola, C. Millot, U. Send, C. Mertens, and J. L. Fuda, "Comparison of XCTD/CTD data," Deep-Sea Res. I : Oceanogr. Res. Pap. 43, 859-876 (1996). https://doi.org/10.1016/0967-0637(96)00031-3
  28. D.-S. Tollefsen, "Recommendations for calculating sound speed profiles from field data," Defence R&D Canada-Atlantic., Tech. Memorandum Rep., 2013.
  29. A. J. Lucas, R. Pinkel, and M. Alford, "Ocean wave energy for long endurance, broad bandwidth ocean monitoring," Oceanogr. 30, 126-127 (2017).