Acknowledgement
This study was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (Ministry of Education) in 2022(2021R1A2C2013841).
References
- Ministry of Employment and Labor. Status of industrial accidents in 2021 [Internet]. Sejong (Korea): Ministry of Employment and Labor; 2022 Mar 16. Available From: https://www.moel.go.kr/skin/doc.html?fn=20220316181319d8e53bb1623f43478809a5e10076b441.hwp&rs=/viewer/BBS/2022/
- Ministry of Employment and Labor. Statistics on the deaths of industrial accidents in 2020 [Internet]. Sejong (Korea): Ministry of Employment and Labor; 2021 Dec 30. Available From: https://www.moel.go.kr/skin/doc.html?fn=2022090115531410acc82f7e9946809d3b368b4b88a393.hwpx&rs=/viewer/BBS/2022/
- Korea Occupational Safety Health Agency (KOSHA). Safety and Health Plus in May [Internet]. Ulsan (Korea): Korea Occupational Safety Health Agency (KOSHA); 2021 Apr 27. Available From: https://www.kosha.or.kr/ebook/fcatalog/ecatalog5.jsp?Dir=493&catimage=&listCall=Y&eclang=ko
- Korea Law Information Center. Enforcement Rule Of The Construction Technology Promotion Act. Sejong (Korea): Korea Law Information Center; 2022 Dec 30. Available From: https://www.law.go.kr/LSW/lsSc.do?section=&menuId=1&sub MenuId=15&tabMenuId=81&eventGubun=060101&query=%EA%B1%B4%EC%84%A4%EA%B8%B0%EC%88%A0%EC%A7%84%ED%9D%A5%EB%B2%95+%EC%8B%9C%ED%96%89%EA%B7%9C%EC%B9%99#undefined
- Ministry of Land, Infrastructure and Transport. Guidelines for Smart Construction Technology Field Application [Internet]. Sejong (Korea): Ministry of Land, Infrastructure and Transport; 2021 Mar 4. Available From: http://m.molit.go.kr/viewer/skin/doc.html?fn=57efd7f626b212c57f4959468f9208ef&rs=/viewer/result/20210304
- Ministry of Land, Infrastructure and Transport. Improving the Safety of Construction Sites by Introducing Smart Safety Equipment [Internet]. Sejong (Korea): Ministry of Land, Infrastructure and Transport; 2020 Mar 23. Available From: http://m.molit.go.kr/viewer/skin/doc.html?fn=ba4f21a0718d1688945470e7c83f2168&rs=/viewer/result/20200320
- Ministry of Land, Infrastructure and Transport. Smart Construction Technology Roadmap [Internet]. Sejong (Korea): Ministry of Land, Infrastructure and Transport; 2018 Oct 31. Available From: http://m.molit.go.kr/viewer/skin/doc.html?fn=48b98c06c65155bf1c8c1a5289011bf2&rs=/viewer/result/20181031
- Lee KP, Choi SY, Son TH, Choi SI. Survey on smart technology applications of korean construction companies and strategies for activation. Seoul (Korea): Construction & Economy Research Institute of Korea Research; 2019 Dec 26. Available From: http://www.cerik.re.kr/report/research/detail/2330
- Lee CH, Kim IS, Lee CY, Shin JM, Kang CH. Application of smart construction technology for quality and productivity improvement. Magazine of the Korea Concrete Institue. 2021 Nov;33(6):67-72.
- Kim WB. Apreliminary study on computer vision based safety helmet detection in constrction [master's thrsis]. [Busan (Korea)]: Pukyong National University; 2018. 52 p.
- Kim MH. Application of deep learning technique for detecting constructio worker wearing safety helmet based on computer vision [master's thrsis]. [Busan (Korea)]: Pukyong National University; 2019. 69 p.
- Shin JK. Real-time monitoring system for personal protective equipment of construction worker using smart technology [Ph.D. dissertation]. [Suwon (Korea)]: Kyonggi University. 2022. 188 p.
- Lee DH. A study on object detection and sensor fusion based on deep learning using lidar and camer [master's thrsis]. [Seoul (Korea)]: Kookmin University; 2020. 83 p.
- Lee YH, Kin YS. Comparison of cnn and yolo for object detection. Journal of the Semiconductor & Display Technology. 2020 Mar;19(1):85-90.
- Park YS, Lee SY, Lee KT, Improving personal protective equipment detectionin smart construction. The Journal of the KICS. 2020 Nov;45(12):2202-9. https://doi.org/10.7840/kics.2020.45.12.2202
- Jeon SY, Park JH, Youn SB, Kim YS, Lee YS, Jeon JH. Real-time worker safety management system using deep learning-based video analysis algorithm. Smart Media Journal. 2020 Sep;9(3):25-30. https://dx.doi.org/10.30693/SMJ.2020.9.3.25
- Nipun DN, Behzaden AH, Paal SG. Deep learning for site safety: Real-time detection of personal protective equipment. Automation in Construction. 2020 Apr;112:103085. https://doi.org/10.1016/j.autcon.2020.103085
- Jeong IS, Kim JW, Chi SH, Roh MG, Biggs H. Solitary work detection of heavy equipment using computer vision. KSCE Journal of Civil and Environmental Engineering Research. 2021 Aug;41(4):441-7. https://doi.org/10.12652/Ksce.2021.41.4.0441
- Jo BW, Lee YS, Kim DK, Kim JH, Choi PH. Image-based proximity warning system for excavator of construction sites. The Journal of the Korea Contents Association. 2016 Aug;16(10):588-97. https://doi.org/10.5392/JKCA.2016.16.10.588
- Cho YW, Kang KS, Son BS, Ryu HG. Extraction of workers and heavy equipment and muliti-object tracking using surveillance system in construction sites. Journal of The Korea Institute of Building Construction. 2021 Oct;21(5):397-408. https://doi.org/10.5345/JKIBC.2021.21.5.397
- Lim TK, Choi BY, Lee DE. Methodology for near-miss identification between earthwork equipment and workers using image analysis. Korean Journal of Construction Engineering and Management. 2019 Jul;20(4):69-76. https://doi.org/10.6106/KJCEM.2019.20.4.069
- Jeon CW. Deep-learning based detection for small to medium sized tools in indoor construction site [master's thrsis]. [Incheon (Korea)]: Inha University. 2021. 70 p.
- Shin DH, A study on Railway Safety Enhancement on the Utilizing Open Source Computer Vision [Ph.D. dissertation]. [Chungju (Korea)]: Korea National University of Transportation. 2019. 134 p.
- Park GJ, Binayark B. Railway facility real-time intruder monitoring system using computer vision and deep learning. Journal of the Korean Society for Railway. 2020 Jan;23(1):35-44. https://doi.org/10.7782/JKSR.2020.23.1.35