DOI QR코드

DOI QR Code

현실적 가뭄대응력 평가를 위한 공급가능일수 기반의 평가지표 개발

Development of an evaluation index based on supply capacity for practical evaluation of drought resilience

  • 김기주 (서울대학교 건설환경종합연구소) ;
  • 김지흔 (서울시립대학교 도시과학연구원 국제도시 및 인프라연구센터) ;
  • 서승범 (서울시립대학교 국제도시과학대학원) ;
  • 김영오 (서울대학교 공과대학 건설환경공학부)
  • Kim, Gi Joo (Institute of Construction and Environmental Engineering, Seoul National University) ;
  • Kim, Jiheun (Institute of Urban Science, University of Seoul) ;
  • Seo, Seung Beom (International School of Urban Sciences, University of Seoul) ;
  • Kim, Young-Oh (Department of Civil & Environmental Engineering, Seoul National University)
  • 투고 : 2022.09.16
  • 심사 : 2022.10.28
  • 발행 : 2023.01.31

초록

최근 발생하는 극한가뭄에 대비하고자 본 연구는 실제 운영에서 수자원 시설물의 가뭄 취약도 및 가뭄대책별 우선순위를 파악할 수 있는 가뭄대응력 지표로 S-day를 제안하였다. 여기서 가뭄대책이란 용수공급 조정, 시설간 연계운영, 비상용량 고려 등이 대표적이며, 각 댐별로 그 구성에 차이가 있다. 본 연구에서는 국내 15개 다목적댐 및 용수댐에 대하여 가뭄대응력을 산정하였으며, 그 결과 20년 빈도의 가뭄이 지속될 시 15개 댐 모두 전반적으로 용수공급 조정이라는 가뭄대책을 통해 안정적인 가뭄대응력을 보였다. 하지만 다른 대책에서는 2년 이상 지속되는 다년 가뭄을 대비하지 못하였으며, 횡성댐과 안동·임하댐은 100년 빈도 가뭄 발생 시 대부분의 대책에서 S-day가 1년을 넘기지 못하였다. 특히, 횡성댐, 안동·임하댐, 군위댐, 운문댐, 대청댐, 주암댐은 20년 빈도 가뭄 발생 시, 가뭄대책을 적용하지 않으면 1년 내로 정상적인 용수공급이 불가능할 것으로 나타났다. 이에 본 연구에서는 S-day를 통해 가뭄대책별 최적 공급 용량을 제안하고 대책별 가뭄단계에 따른 가동시기를 변경해 가뭄대응 효과를 평가하였다. 마지막으로 미래 사회·경제적 변동에 따른 수요변화를 반영하고자 현행 공급 계약량에 대해 10%씩 증감하여 전체 15개 댐의 가뭄대응력을 재평가하였다. 그 결과 공급계약량이 10% 감소할 경우, 대부분의 댐에서 용수공급 조정만으로도 심각한 가뭄에 대한 대비가 가능할 것으로 분석되었다.

This study suggests the drought resilience index as S-day as a means of preparing for the recent extreme drought, allowing for the actual operational identification of each drought countermeasure's priority as well as the vulnerability of water resource facilities to drought. Although each dam's drought measures are unique in this case, the representative examples include adjusting the water supply, linking the functioning of various facilities, and considering emergency capacity. Here, 15 multipurpose dams and water supply dams in Korea were inspected. Under the return period of 20-year drought, most of dams showed stable by adjusting the water supply overall. The measures, however, did not seem to be able to resist a multi-year drought lasting more than two years. Besides, Hoengseong and Anodong-Imha Dam only lasted a year under the 100-year drought return period with other measures. Without the deployment of drought mitigation strategies, it is expected that the Hoengseong Dam, Andong-Imha Dam, Gunwi Dam, Unmun Dam, Daecheong Dam, and Juam Dam would not be able to meet the all water demand for a year under the 20-year drought condition. The ideal capacity for each drought measure was then suggested. Additionally, by increasing or decreasing the current supply contract by 10% in order to account for demand changes resulting from socio-economic instability, the drought response capacity of all 15 dams was re-evaluated. By lowering the supply contract amount by 10%, it was possible to endure a severe drought.

키워드

과제정보

본 연구는 K-water의 "유역별 가뭄대응력 평가 및 그에 따른 댐·보 운영 개선방안 연구"(과제번호 M210068)의 일환으로 수행되었으며, 서울대학교 공학연구원 및 건설환경종합연구소의 지원에도 감사를 드립니다. 또한 본 연구는 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행되었습니다(No. NRF-2021R1C1C1004492).

참고문헌

  1. Hashimoto, T., Stedinger, J.R., and Loucks, D.P. (1982). "Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation." Water Resources Research, Vol. 18, No. 1, pp. 14-20. https://doi.org/10.1029/WR018i001p00014
  2. Kelley, C.P., Mohtadi, S., Cane, M.A., Seager, R., and Kushnir, Y. (2015). "Climate change in the Fertile Crescent and implications of the recent Syrian drought." Proceedings of the National Academy of Sciences, Vol. 112, No. 11, pp. 3241-3246. https://doi.org/10.1073/pnas.1421533112
  3. Kim, G.J., Kim, Y.-O., and Reed, P.M. (2021). "Improving the robustness of reservoir operations with stochastic dynamic programming." Journal of Water Resources Planning and Management, Vol. 147, No. 7, 04021030.
  4. Kim, G.J., Seo, S.B., and Kim Y.-O. (2019a). "Elicitation of drought alternatives based on water policy council and the role of shared vision model." Journal of Korea Water Resources Association, Vol. 52, No. 6, pp. 429-440. https://doi.org/10.3741/JKWRA.2019.52.6.429
  5. Kim, G.J., Seo, S.B., and Kim Y.-O. (2022). "Adaptive reservoir management by reforming the zone-based hedging rules again multi-year droughts." Water Resources Management, Vol. 36, No. 10, pp.3575-3590. https://doi.org/10.1007/s11269-022-03214-0
  6. Kim, J.S., Jain, S., Lee, J.H., Chen, H., and Park, S.Y. (2019b). "Quantitative vulnerability assessment of water quality to extreme drought in a changing climate." Ecological Indicators, Vol. 103, pp. 688-697. https://doi.org/10.1016/j.ecolind.2019.04.052
  7. King, A.D., Pitman, A.J., Henley, B.J., Ukkola, A.M., and Brown, J.R. (2020). "The role of climate variability in Australian drought." Nature Climate Change, Vol. 10, No. 3, pp. 177-179. https://doi.org/10.1038/s41558-020-0718-z
  8. K-water (2019). Development of water reservation rate and reservoir operation technologies for climate change adaptation. 2020-WR-RR-15-35, pp. 110-161.
  9. Lee, D.-R., Moon, J.-W., Lee, D.-H., and Ahn, J.-H. (2006). "Development of water supply capacity index to monitor droughts in a reservoir." Journal of Korea Water Resources Association, Vol. 39, No. 3, pp. 199-214. https://doi.org/10.3741/JKWRA.2006.39.3.199
  10. Lee, D-H., Choi, C-W., Yu, M-S., and Yi, J-E. (2012). "Reevaluation of multi-purpose reservoir yield." Journal of Korea Water Resources Association, Vol. 45, No. 4, pp. 361-371. https://doi.org/10.3741/JKWRA.2012.45.4.361
  11. Leng, G., Tang, Q., and Rayburg, S. (2015). "Climate change impacts on meteorological, agricultural and hydrological droughts in China." Global and Planetary Change, Vol. 126, pp. 23-34. https://doi.org/10.1016/j.gloplacha.2015.01.003
  12. Mehran, A., Mazdiyasni, O., and AghaKouchak, A. (2015). "A hybrid framework for assessing socioeconomic drought: Linking climate variability, local resilience, and demand." Journal of Geophysical Research: Atmospheres, Vol. 120, No. 15, pp. 7520-7533. https://doi.org/10.1002/2015JD023147
  13. Ministry of Environment (ME) (2020). Korean climate change assessment report 2020. Report 11-1480000-001690-01, pp. 30-68.
  14. Ministry of Land, Transport and Maritime Affairs (MLTM) (2011). Water vision (2011-2020). Report 11-1611000-002114-13.
  15. Nguyen, H., Mehrotra, R., and Sharma, A. (2020). "Assessment of climate change impacts on reservoir storage reliability, resilience, and vulnerability using a multivariate frequency bias correction approach." Water Resources Research, Vol. 56, No. 2, e2019WR026022.
  16. Park, J-S. (2015). "Dam drought status and countermeasures." Water for Future, Vol. 48, No. 9, pp. 28-35.
  17. Pedro-Monzonis, M., Solera, A., Ferrer, J., Estrela, T., and ParedesArquiola, J. (2015). "A review of water scarcity and drought indexes in water resources planning and management." Journal of Hydrology, Vol. 527, pp. 482-493. https://doi.org/10.1016/j.jhydrol.2015.05.003
  18. World Meteorological Organization (WMO) (2009). Experts agree on a universal drought index to cope with climate risks. WMO Press Release No. 872, Geneva, Switzerland.